983 resultados para nonlinear regression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of local-polynomial modeling of smooth time-varying signals with unknown functional form, in the presence of additive noise. The problem formulation is in the time domain and the polynomial coefficients are estimated in the pointwise minimum mean square error (PMMSE) sense. The choice of the window length for local modeling introduces a bias-variance tradeoff, which we solve optimally by using the intersection-of-confidence-intervals (ICI) technique. The combination of the local polynomial model and the ICI technique gives rise to an adaptive signal model equipped with a time-varying PMMSE-optimal window length whose performance is superior to that obtained by using a fixed window length. We also evaluate the sensitivity of the ICI technique with respect to the confidence interval width. Simulation results on electrocardiogram (ECG) signals show that at 0dB signal-to-noise ratio (SNR), one can achieve about 12dB improvement in SNR. Monte-Carlo performance analysis shows that the performance is comparable to the basic wavelet techniques. For 0 dB SNR, the adaptive window technique yields about 2-3dB higher SNR than wavelet regression techniques and for SNRs greater than 12dB, the wavelet techniques yield about 2dB higher SNR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work intends to demonstrate the importance of geometrically nonlinear crosssectional analysis of certain composite beam-based four-bar mechanisms in predicting system dynamic characteristics. All component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically nonlinear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and nonlinear 1-D analyses along the four beam reference curves. For thin rectangular cross-sections considered here, the 2-D cross-sectional nonlinearity is overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the nonlinear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the nonlinear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict multi-body dynamic responses, more quickly and accurately than would otherwise be possible. The analysis methodology can be viewed as a three-step procedure: First, the cross-sectional properties of each bar of the mechanism is determined analytically based on an asymptotic procedure, starting from Classical Laminated Shell Theory (CLST) and taking advantage of its thin strip geometry. Second, the dynamic response of the nonlinear, flexible fourbar mechanism is simulated by treating each bar as a 1-D beam, discretized using finite elements, and employing energy-preserving and -decaying time integration schemes for unconditional stability. Finally, local 3-D deformations and stresses in the entire system are recovered, based on the 1-D responses predicted in the previous step. With the model, tools and procedure in place, we shall attempt to identify and investigate a few problems where the cross-sectional nonlinearities are significant. This will be carried out by varying stacking sequences and material properties, and speculating on the dominating diagonal and coupling terms in the closed-form nonlinear beam stiffness matrix. Numerical examples will be presented and results from this analysis will be compared with those available in the literature, for linear cross-sectional analysis and isotropic materials as special cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new technique named as model predictive spread acceleration guidance (MPSAG) is proposed in this paper. It combines nonlinear model predictive control and spread acceleration guidance philosophies. This technique is then used to design a nonlinear suboptimal guidance law for a constant speed missile against stationary target with impact angle constraint. MPSAG technique can be applied to a class of nonlinear problems, which leads to a closed form solution of the lateral acceleration (latax) history update. Guidance command assumed is the lateral acceleration (latax), applied normal to the velocity vector. The new guidance law is validated by considering the nonlinear kinematics with both lag-free as well as first order autopilot delay. The simulation results show that the proposed technique is quite promising to come up with a nonlinear guidance law that leads to both very small miss distance as well as the desired impact angle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optimal control law for a general nonlinear system can be obtained by solving Hamilton-Jacobi-Bellman equation. However, it is difficult to obtain an analytical solution of this equation even for a moderately complex system. In this paper, we propose a continuoustime single network adaptive critic scheme for nonlinear control affine systems where the optimal cost-to-go function is approximated using a parametric positive semi-definite function. Unlike earlier approaches, a continuous-time weight update law is derived from the HJB equation. The stability of the system is analysed during the evolution of weights using Lyapunov theory. The effectiveness of the scheme is demonstrated through simulation examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new technique named as model predictive spread acceleration guidance (MPSAG) is proposed in this paper. It combines nonlinear model predictive control and spread acceleration guidance philosophies. This technique is then used to design a nonlinear suboptimal guidance law for a constant speed missile against stationary target with impact angle constraint. MPSAG technique can be applied to a class of nonlinear problems, which leads to a closed form solution of the lateral acceleration (latax) history update. Guidance command assumed is the lateral acceleration (latax), applied normal to the velocity vector. The new guidance law is validated by considering the nonlinear kinematics with both lag-free as well as first order autopilot delay. The simulation results show that the proposed technique is quite promising to come up with a nonlinear guidance law that leads to both very small miss distance as well as the desired impact angle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we develop and analyze C(0) penalty methods for the fully nonlinear Monge-Ampere equation det(D(2)u) = f in two dimensions. The key idea in designing our methods is to build discretizations such that the resulting discrete linearizations are symmetric, stable, and consistent with the continuous linearization. We are then able to show the well-posedness of the penalty method as well as quasi-optimal error estimates using the Banach fixed-point theorem as our main tool. Numerical experiments are presented which support the theoretical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a novel, scalable, clustering based Ordinal Regression formulation, which is an instance of a Second Order Cone Program (SOCP) with one Second Order Cone (SOC) constraint. The main contribution of the paper is a fast algorithm, CB-OR, which solves the proposed formulation more eficiently than general purpose solvers. Another main contribution of the paper is to pose the problem of focused crawling as a large scale Ordinal Regression problem and solve using the proposed CB-OR. Focused crawling is an efficient mechanism for discovering resources of interest on the web. Posing the problem of focused crawling as an Ordinal Regression problem avoids the need for a negative class and topic hierarchy, which are the main drawbacks of the existing focused crawling methods. Experiments on large synthetic and benchmark datasets show the scalability of CB-OR. Experiments also show that the proposed focused crawler outperforms the state-of-the-art.