990 resultados para nonlinear optical crystals


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lanthanide compounds of general formula [Ln2(2,5-tdc) 3(dmf)2(H2O)2] ·2dmf·H2O (Ln = Eu(III) (1), Tb(III) (2), Gd(III) (3) and Dy(III) (4), dmf = N,N′-dimethylformamide and 2,5-tdc2- = 2,5-thiophedicarboxylate anion) were synthesized and characterized by elemental analysis, X-ray powder diffraction patterns, thermogravimetric analysis and infrared spectroscopy. Phosphorescence data of Gd(III) complex showed that the triplet states (T1) of 2,5-tdc2- ligand have higher energy than the main emitting states of Eu(III), Tb(III) and Dy(III), indicating that 2,5-tdc2- ligand can act as intramolecular energy donor for these metal ions. An energy level diagram was used to establish the most relevant channels involved in the ligand-to-metal energy transfer. The high value of experimental intensity parameter Ω2 for the Eu(III) complex indicate that the europium ion is in a highly polarizable chemical environment. The emission quantum efficiency (η) of the 5D0 emitting level of Eu(III) was also determined. The complexes act as possible light conversion molecular devices (LCMDs). © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the supercontinuum (SC) generation in a suspended-core As2S3 chalcogenide microstructured optical fiber (MOF). The variation of SC is investigated by changing the fiber length, pump peak power and pump wavelength. In the case of long fibers (20 and 40 cm), the SC ranges are discontinuous and stop at the wavelengths shorter than 3500 nm, due to the absorption of fiber. In the case of short fibers (1.3 and 2.4 cm), the SC ranges are continuous and can extend to the wavelengths longer than 4 μm. The SC broadening is observed when the pump peak power increases from 0.24 to 1.32 kW at 2500 nm. The SC range increases with the pump wavelength changing from 2200 to 2600 nm, corresponding to the dispersion of As2S3 MOF from the normal to anomalous region. The SC generation is simulated by the generalized nonlinear Schrödinger equation. The simulation includes the SC difference between 1.3 and 2.4 cm long fiber by 2500 nm pumping, the variation of SC with pump peak power in 2.4 cm long fiber, and the variation of SC with pump wavelength in 1.3 cm long fiber. The simulation agrees well with the experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel optical setup for imaging through reflection holography with Bi12TiO20 (BTO) sillenite photorefractive crystals is proposed. Aiming a compact, robust and simple optical setup the lensless Denisiuk arrangement was chosen, using a He-Ne red laser as light source. In this setup the holographic medium is placed between the light source and the object. The beam impinging the crystal front face is the reference one, while the light scattered by the surface is the object beam in a holographic recording by diffusion. In order to allow the readout of the diffracted wave only and to keep the setup simplicity a polarizing beam splitter cube (PBS) was positioned at the BTO input. The reference beam is s-polarized (polarization direction perpendicular to the table top) and the crystal. 〈001〉-axis is rotated by an angle γ with respect to the input polarization in order to make the transmitted object beam and the diffracted beam to have orthogonal polarizations. While the transmitted wave is reflected by the PBS at a right angle, the diffracted wave carrying the holographic reconstruction of the object passes through the PBS, being collected by a positive lens in order to form the holographic image at a CCD camera. The holographic recording with the grating vector is parallel to the 〈100〉-axis. An expression for the diffracted wave intensity as a function of γ was derived, and this relation was experimentally investigated. © 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical networks based on passive-star couplers and employing WDM have been proposed for deployment in local and metropolitan areas. These networks suffer from splitting, coupling, and attenuation losses. Since there is an upper bound on transmitter power and a lower bound on receiver sensitivity, optical amplifiers are usually required to compensate for the power losses mentioned above. Due to the high cost of amplifiers, it is desirable to minimize their total number in the network. However, an optical amplifier has constraints on the maximum gain and the maximum output power it can supply; thus, optical amplifier placement becomes a challenging problem. In fact, the general problem of minimizing the total amplifier count is a mixed-integer nonlinear problem. Previous studies have attacked the amplifier-placement problem by adding the “artificial” constraint that all wavelengths, which are present at a particular point in a fiber, be at the same power level. This constraint simplifies the problem into a solvable mixed integer linear program. Unfortunately, this artificial constraint can miss feasible solutions that have a lower amplifier count but do not have the equally powered wavelengths constraint. In this paper, we present a method to solve the minimum amplifier- placement problem, while avoiding the equally powered wavelength constraint. We demonstrate that, by allowing signals to operate at different power levels, our method can reduce the number of amplifiers required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Routing and wavelength assignment (RWA) is an important problem that arises in wavelength division multiplexed (WDM) optical networks. Previous studies have solved many variations of this problem under the assumption of perfect conditions regarding the power of a signal. In this paper, we investigate this problem while allowing for degradation of routed signals by components such as taps, multiplexers, and fiber links. We assume that optical amplifiers are preplaced. We investigate the problem of routing the maximum number of connections while maintaining proper power levels. The problem is formulated as a mixed-integer nonlinear program and two-phase hybrid solution approaches employing two different heuristics are developed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The free-carrier absorption cross-section sigma of a magnetic colloid composed of magnetite nanoparticles dispersed in oil is obtained by using the Z-scan technique in different experimental conditions of the laser beam. We show that it is possible to obtain sigma with picosecond pulsed and millisecond chopped beams with pulse frequencies smaller than about 30 Hz. For higher pulse frequencies, the heating of the colloidal system triggers the appearance of the Soret effect. This effect artificially increases the value of sigma calculated from the experimental results. The limits of the different experimental setups are discussed. (C) 2012 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports on the spectral dependence of both nonlinear refraction and absorption in lead-germanium oxide glasses (PbO-GeO2) containing silver nanoparticles. We have found that this material is suitable for all-optical switching at telecom wavelengths but at the visible range it behaves either as a saturable absorber or as an optical limiter. (C) 2012 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this communication, we report the effect of different surfactants [cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and sodium bis(2-ethylhexyl)sulfosuccinate (AOT)] on the shape, growth and photoluminescence (PL) behavior of manganese tungstate (MnWO4) crystals synthesized by the microwave-hydrothermal (MH) method at 413 K for 45 min. These crystals were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), ultraviolet-visible (UV-vis) absorption spectroscopy and PL measurements. XRD patterns proved that these crystals have a monoclinic structure. FE-SEM images showed that MnWO4 crystals exhibit different shapes and growth mechanisms depending on the surfactant employed. The CTAB cationic surfactant promotes the hindrance of small nuclei that leads to the formation of flake-like nanocrystals, while SDS and AOT anionic surfactants promote a growth of crystals to plate-like and leaf-like crystals due to considerable size effect of counter-ions (RSO4- and RSO2O-) and an increase in Na+ ion remnants. UV-vis absorption spectroscopy revealed different optical band gap values due to modifications in the shape, surface and crystal size. Finally, the effect of surfactants on the crystal shapes and average crystal size distribution causing changes in the PL behavior of MnWO4 crystals was explained. (C) 2011 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Barium praseodymium tungstate (Ba1-xPr2x/3)WO4 crystals with (x = 0, 0.01, and 0.02) were prepared by the coprecipitation method. These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements, Fourier-transform Raman (FT-Raman) and Fourier-transform infrared (FT-IR) spectroscopies. The shape and size of these crystals were observed by field emission scanning electron microcopy (FE-SEM). Their optical properties were investigated by ultraviolet visible (UV-vis) absorption and photoluminescence (PL) measurements. Moreover, we have studied the photocatalytic (PC) activity of crystals for degradation of rhodamine B (RhB) dye. XRD patterns, Rietveld refinements data, FT-Raman and FT-IR spectroscopies indicate that all crystals exhibit a tetragonal structure without deleterious phases. FT-Raman spectra exhibited 13 Raman-active modes in a range from 50 to 1000 cm(-1), while FT-IR spectra have 8 infrared active modes in a range from 200 to 1050 cm(-1). FE-SEM images showed different shapes (bonbon-, spindle-, rice-and flake-like) as well as a reduction in the crystal size with an increase in Pr3+ ions. A possible growth process was proposed for these crystals. UV-vis absorption measurements revealed a decrease in optical band gap values with an increase of Pr3+ into the matrix. An intense green PL emission was noted for (Ba1-xPr2x/3)WO4 crystals (x = 0), while crystals with (x = 0.01 and 0.02) produced a reduction in the wide band PL emission and the narrow band PL emission which is related to f-f transitions from Pr3+ ions. High photocatalytic efficiency was verified for the bonbon-like BaWO4 crystals as a catalyst in the degradation of the RhB dye after 25 min under UV-light. Finally, we discuss possible mechanisms for PL and PC properties of these crystals.