920 resultados para non-polluting systems
Resumo:
In this paper a new system identification algorithm is introduced for Hammerstein systems based on observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a non-uniform rational B-spline (NURB) neural network. The proposed system identification algorithm for this NURB network based Hammerstein system consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples including a model based controller are utilized to demonstrate the efficacy of the proposed approach. The controller consists of computing the inverse of the nonlinear static function approximated by NURB network, followed by a linear pole assignment controller.
Resumo:
A procedure is presented for obtaining conformational parameters from oriented but non-crystalline polymers. This is achieved by comparison of the experimental wide angle X-ray scattering with that calculated from models but in such a way that foreknowledge of the orientation distribution function is not required. X-ray scattering intensity values for glassy isotactic poly(methylmethacrylate) are analysed by these techniques. The method could be usefully applied to other oriented molecular systems such as liquid crystalline materials.
Resumo:
Point mutations in LRRK2 cause autosomal dominant Parkinson's disease. Despite extensive efforts to determine the mechanism of cell death in patients with LRRK2 mutations, the aetiology of LRRK2 PD is not well understood. To examine possible alterations in gene expression linked to the presence of LRRK2 mutations, we carried out a case versus control analysis of global gene expression in three systems: fibroblasts isolated from LRRK2 mutation carriers and healthy, non-mutation carrying controls; brain tissue from G2019S mutation carriers and controls; and HEK293 inducible LRRK2 wild type and mutant cell lines. No significant alteration in gene expression was found in these systems following correction for multiple testing. These data suggest that any alterations in basal gene expression in fibroblasts or cell lines containing mutations in LRRK2 are likely to be quantitatively small. This work suggests that LRRK2 is unlikely to play a direct role in modulation of gene expression, although it remains possible that this protein can influence mRNA expression under pathogenic cicumstances.
Resumo:
Global communicationrequirements andloadimbalanceof someparalleldataminingalgorithms arethe major obstacles to exploitthe computational power of large-scale systems. This work investigates how non-uniform data distributions can be exploited to remove the global communication requirement and to reduce the communication costin parallel data mining algorithms and, in particular, in the k-means algorithm for cluster analysis. In the straightforward parallel formulation of the k-means algorithm, data and computation loads are uniformly distributed over the processing nodes. This approach has excellent load balancing characteristics that may suggest it could scale up to large and extreme-scale parallel computing systems. However, at each iteration step the algorithm requires a global reduction operationwhichhinders thescalabilityoftheapproach.Thisworkstudiesadifferentparallelformulation of the algorithm where the requirement of global communication is removed, while maintaining the same deterministic nature ofthe centralised algorithm. The proposed approach exploits a non-uniform data distribution which can be either found in real-world distributed applications or can be induced by means ofmulti-dimensional binary searchtrees. The approachcanalso be extended to accommodate an approximation error which allows a further reduction ofthe communication costs. The effectiveness of the exact and approximate methods has been tested in a parallel computing system with 64 processors and in simulations with 1024 processing element
Resumo:
Clinical pathway is an approach to standardise care processes to support the implementations of clinical guidelines and protocols. It is designed to support the management of treatment processes including clinical and non-clinical activities, resources and also financial aspects. It provides detailed guidance for each stage in the management of a patient with the aim of improving the continuity and coordination of care across different disciplines and sectors. However, in the practical treatment process, the lack of knowledge sharing and information accuracy of paper-based clinical pathways burden health-care staff with a large amount of paper work. This will often result in medical errors, inefficient treatment process and thus poor quality medical services. This paper first presents a theoretical underpinning and a co-design research methodology for integrated pathway management by drawing input from organisational semiotics. An approach to integrated clinical pathway management is then proposed, which aims to embed pathway knowledge into treatment processes and existing hospital information systems. The capability of this approach has been demonstrated through the case study in one of the largest hospitals in China. The outcome reveals that medical quality can be improved significantly by the classified clinical pathway knowledge and seamless integration with hospital information systems.
Resumo:
In addition to the Hamiltonian functional itself, non-canonical Hamiltonian dynamical systems generally possess integral invariants known as ‘Casimir functionals’. In the case of the Euler equations for a perfect fluid, the Casimir functionals correspond to the vortex topology, whose invariance derives from the particle-relabelling symmetry of the underlying Lagrangian equations of motion. In a recent paper, Vallis, Carnevale & Young (1989) have presented algorithms for finding steady states of the Euler equations that represent extrema of energy subject to given vortex topology, and are therefore stable. The purpose of this note is to point out a very general method for modifying any Hamiltonian dynamical system into an algorithm that is analogous to those of Vallis etal. in that it will systematically increase or decrease the energy of the system while preserving all of the Casimir invariants. By incorporating momentum into the extremization procedure, the algorithm is able to find steadily-translating as well as steady stable states. The method is applied to a variety of perfect-fluid systems, including Euler flow as well as compressible and incompressible stratified flow.
Resumo:
Multicellularity evolved well before 600 million years ago, and all multicellular animals have evolved since then with the need to protect against pathogens. There is no reason to expect their immune systems to be any less sophisticated than ours. The vertebrate system, based on rearranging immunoglobulin-superfamily domains, appears to have evolved partly as a result of chance insertion of RAG genes by horizontal transfer. Remarkably sophisticated systems for expansion of immunological repertoire have evolved in parallel in many groups of organisms. Vaccination of invertebrates against commercially important pathogens has been empirically successful, and suggests that the definition of an adaptive and innate immune system should no longer depend on the presence of memory and specificity, since these terms are hard to define in themselves. The evolution of randomly-created immunological repertoire also carries with it the potential for generating autoreactive specificities and consequent autoimmune damage.While invertebrates may use systems analogous to ours to control autoreactive specificities, they may have evolved alternative mechanisms which operate either at the level of individuals-within-populations rather than cells-within-individuals, by linking self-reactive specificities to regulatory pathways and non-self-reactive to effector pathways.
Resumo:
This thesis is concerned with development of improved management practices in indigenous chicken production systems in a research process that includes participatory approaches with smallholder farmers and other stakeholders in Kenya. The research process involved a wide range of activities that included on-station experiments, field surveys, stakeholder consultations in workshops, seminars and visits, and on-farm farmer participatory research to evaluate the effect of some improved management interventions on production performance of indigenous chickens. The participatory research was greatly informed from collective experiences and lessons of the previous activities. The on-station studies focused on hatching, growth and nutritional characteristics of the indigenous chickens. Four research publications from these studies are included in this thesis. Quantitative statistical analyses were applied and they involved use of growth models estimated with non-linear regressions for the growth characteristics, chi-square determinations to investigate differences among different reciprocal crosses of indigenous chickens and general linear models and covariance determination for the nutrition study. The on-station studies brought greater understanding of performance and production characteristics of indigenous chickens and the influence of management practices on these characteristics. The field surveys and stakeholder consultations helped in understanding the overarching issues affecting the productivity of the indigenous chickens systems and their place in the livelihoods of smallholder farmers. These activities created strong networking opportunities with stakeholders from a wide spectrum. The on-farm farmer participatory research involved selection of 200 farmers in five regions followed by training and introduction of interventions on improved management practices which included housing, vaccination, deworming and feed supplementation. Implementation and monitoring was mainly done by individual farmers continuously for close to one and half years. Six quarterly visits to the farms were made by the research team to monitor and provide support for on-going project activities. The data collected has been analysed for 5 consecutive 3-monthly periods. Descriptive and inferential statistics were applied to analyse the data collected involving treatment applications, production characteristics and flock demography characteristics. Out of the 200 farmers initially selected, 173 had records on treatment applications and flock demography characteristics while 127 farmers had records on production characteristics. The demographic analysis with a dissimilarity index of flock size produced 7 distinct farm groups from among the 173 farms. Two of these farm groups were represented in similar numbers in each of the five regions. The research process also involved a number of dissemination and communication strategies that have brought the process and project outcomes into the domain of accessibility by wider readership locally and globally. These include workshops, seminars, field visits and consultations, local and international conferences, electronic conferencing, publications and personal communication via emailing and conventional posting. A number of research and development proposals were also developed based on the knowledge and experiences gained from the research process. The thesis captures the research process activities and outcomes in 8 chapters which include in ascending order – introduction, theoretical concepts underpinning FPR, research methodology and process, on-station research output, FPR descriptive statistical analysis, FPR inferential statistical analysis on production characteristics, FPR demographic analysis and conclusions. Various research approaches both quantitative and qualitative have been applied in the research process indicating the possibilities and importance of combining both systems for greater understanding of issues being studied. In our case, participatory studies of the improved management of indigenous chickens indicates their potential importance as livelihood assets for poor people.
Resumo:
Cypriot Greek, a variety of Greek spoken in the island of Cyprus, is relatively distinct from Standard Greek in all linguistic domains. The regional variety does not have a standard, official orthography and it is rarely used for everyday written purposes. Following technological development and the emergence of Computer-mediated Communication, a Romanized version of written CG is now widely used in online text-based communication, among teenagers and young adults (Themistocleous, C. (2008), The use of Cypriot-Greek in synchronous computer-mediated communication (PhD thesis), University of Manchester). In this study, I present the innovative ways that Greek-Cypriots use Roman characters in an effort to represent features of their spoken language in their online writings. By analysing data obtained from channel #Cyprus of Internet Relay Chat, I demonstrate how the choice of writing in CG affects the ways that Roman characters are used. I argue that this practice is not just a response to technological constrains but it actually has a wider social significance.
Resumo:
Smart healthcare is a complex domain for systems integration due to human and technical factors and heterogeneous data sources involved. As a part of smart city, it is such a complex area where clinical functions require smartness of multi-systems collaborations for effective communications among departments, and radiology is one of the areas highly relies on intelligent information integration and communication. Therefore, it faces many challenges regarding integration and its interoperability such as information collision, heterogeneous data sources, policy obstacles, and procedure mismanagement. The purpose of this study is to conduct an analysis of data, semantic, and pragmatic interoperability of systems integration in radiology department, and to develop a pragmatic interoperability framework for guiding the integration. We select an on-going project at a local hospital for undertaking our case study. The project is to achieve data sharing and interoperability among Radiology Information Systems (RIS), Electronic Patient Record (EPR), and Picture Archiving and Communication Systems (PACS). Qualitative data collection and analysis methods are used. The data sources consisted of documentation including publications and internal working papers, one year of non-participant observations and 37 interviews with radiologists, clinicians, directors of IT services, referring clinicians, radiographers, receptionists and secretary. We identified four primary phases of data analysis process for the case study: requirements and barriers identification, integration approach, interoperability measurements, and knowledge foundations. Each phase is discussed and supported by qualitative data. Through the analysis we also develop a pragmatic interoperability framework that summaries the empirical findings and proposes recommendations for guiding the integration in the radiology context.
Resumo:
Migratory grazing of zooplankton between non-toxic phytoplankton (NTP) and toxic phytoplankton (TPP) is a realistic phenomena unexplored so far. The present article is a first step in this direction. A mathematical model of NTP–TPP-zooplankton with constant and variable zooplankton migration is proposed and analyzed. The asymptotic dynamics of the model system around the biologically feasible equilibria is explored through local stability analysis. The dynamics of the proposed system is explored and displayed for different combination of migratory parameters and toxin inhibition parameters. Our analysis suggests that the migratory grazing of zooplankton has a significant role in determining the dynamic stability and oscillation of phytoplankton zooplankton systems.
Resumo:
Phase studies have been performed for quaternary systems composed of egg lecithin, cosurfactant, water and oil. The lecithin used was the commercially available egg lecithin Ovothin 200 (which comprises ≥ 92% phosphatidylcholine). The cosurfactants employed were propanol and butanol, and these were used at lecithin/cosurfactant mixing ratios (Km) of 1:1 and 1.94:1 (weight basis). Six polar oils were investigated, including the alkanoic acids, octanoic and oleic, their corresponding ethyl esters and the medium and long chain triglycerides, Miglyol 812 and soybean oil. All oils, irrespective of the alcohol and the Km used, gave rise to systems that produced a stable isotropic region along the surfactant/oil axis (designated as a reverse microemulsion system). In addition, the systems incorporating propanol at both Km and butanol at a Km of 1.94: 1, generally gave rise to a liquid crystalline region and, in some cases, a second isotropic non-birefingent area (designated as a normal microemulsion system). The phase behaviour observed was largely dependent upon the alcohol and Km used and the size and the polarity of the oil present.
Resumo:
We discuss the modelling of dielectric responses of amorphous biological samples. Such samples are commonly encountered in impedance spectroscopy studies as well as in UV, IR, optical and THz transient spectroscopy experiments and in pump-probe studies. In many occasions, the samples may display quenched absorption bands. A systems identification framework may be developed to provide parsimonious representations of such responses. To achieve this, it is appropriate to augment the standard models found in the identification literature to incorporate fractional order dynamics. Extensions of models using the forward shift operator, state space models as well as their non-linear Hammerstein-Wiener counterpart models are highlighted. We also discuss the need to extend the theory of electromagnetically excited networks which can account for fractional order behaviour in the non-linear regime by incorporating nonlinear elements to account for the observed non-linearities. The proposed approach leads to the development of a range of new chemometrics tools for biomedical data analysis and classification.
Resumo:
Explaining the diversity of languages across the world is one of the central aims of typological, historical, and evolutionary linguistics. We consider the effect of language contact-the number of non-native speakers a language has-on the way languages change and evolve. By analysing hundreds of languages within and across language families, regions, and text types, we show that languages with greater levels of contact typically employ fewer word forms to encode the same information content (a property we refer to as lexical diversity). Based on three types of statistical analyses, we demonstrate that this variance can in part be explained by the impact of non-native speakers on information encoding strategies. Finally, we argue that languages are information encoding systems shaped by the varying needs of their speakers. Language evolution and change should be modeled as the co-evolution of multiple intertwined adaptive systems: On one hand, the structure of human societies and human learning capabilities, and on the other, the structure of language.
Resumo:
This study investigated the effects of increased genetic diversity in winter wheat (Triticum aestivum L.), either from hybridization across genotypes or from physical mixing of lines, on grain yield, grain quality, and yield stability in different cropping environments. Sets of pure lines (no diversity), chosen for high yielding ability or high quality, were compared with line mixtures (intermediate level of diversity), and lines crossed with each other in composite cross populations (CCPn, high diversity). Additional populations containing male sterility genes (CCPms) to increase outcrossing rates were also tested. Grain yield, grain protein content, and protein yield were measured at four sites (two organically-managed and two conventionally-managed) over three years, using seed harvested locally in each preceding year. CCPn and mixtures out-yielded the mean of the parents by 2.4% and 3.6%, respectively. These yield differences were consistent across genetic backgrounds but partly inconsistent across cropping environments and years. Yield stability measured by environmental variance was higher in CCPn and CCPms than the mean of the parents. An index of yield reliability tended to be higher in CCPn, CCPms and mixtures than the mean of the parents. Lin and Binns’ superiority values of yield and protein yield were consistently and significantly lower (i.e. better) in the CCPs than in the mean of the parents, but not different between CCPs and mixtures. However, CCPs showed greater early ground cover and plant height than mixtures. When compared with the (locally non-predictable) best-yielding pure line, CCPs and mixtures exhibited lower mean yield and somewhat lower yield reliability but comparable superiority values. Thus, establishing CCPs from smaller sets of high-performing parent lines might optimize their yielding ability. On the whole, the results demonstrate that using increased within-crop genetic diversity can produce wheat crops with improved yield stability and good yield reliability across variable and unpredictable cropping environments.