997 resultados para nesting behavior


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compressive loading of the carbon nanotube (CNT) has attracted much attention due to its entangled cellular like structure (CNT foam). This report investigates the mechanical behavior of magnetorheological fluid impregnated micro porous CNT foam that has not been realized before at this scale. Compressive behavior of CNT foam is found to greatly depend on the variation in both fluid viscosity as well as magnetic field intensity. Moreover, maximum achieved stress and energy absorption in CNT foam followed a power law behavior with the magnetic field intensity. Magnetic field induced movement of both CNT and iron oxide particles along the field direction is shown to dominate compressive behavior of CNT foam over highly attractive van der Waals forces between individual CNT. Therefore, this study demonstrates a method for tailoring the mechanical behavior of the fluid impregnated CNT foam. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three copper-azido complexes Cu-4(N-3)(8)(L-1)(2)(MeOH)(2)](n) (1), Cu-4(N-3)(8)(L-1)(2)] (2), and Cu-5(N-3)(10)(L-1)(2)](n) (3) L-1 is the imine resulting from the condensation of pyridine-2-carboxaldehyde with 2-(2-pyridyl)ethylamine] have been synthesized using lower molar equivalents of the Schiff base ligand with Cu(NO3)(2)center dot 3H(2)O and an excess of NaN3. Single crystal X-ray structures show that the basic unit of the complexes 1 and 2 contains Cu-4(II) building blocks; however, they have distinct basic and overall structures due to a small change in the bridging mode of the peripheral pair of copper atoms in the linear tetranudear structures. Interestingly, these changes are the result of changing the solvent system (MeOH/H2O to EtOH/H2O) used for the synthesis, without changing the proportions of the components (metal to ligand ratio 2:1). Using even lower proportions of the ligand, another unique complex was isolated with Cu-5(II) building units, forming a two-dimensional complex (3). Magnetic susceptibility measurements over a wide range of temperature exhibit the presence of both antiferromagnetic (very weak) and ferromagnetic exchanges within the tetranuclear unit structures. Density functional theory calculations (using B3LYP functional, and two different basis sets) have been performed on the complexes 1 and 2 to provide a qualitative theoretical interpretation of their overall magnetic behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cobalt copper ferrite nanopowders with composition Co1-xCu5Fe2O4 (0.0 <= x <= 0.5) was synthesized by solution combustion method. The powder X-ray diffraction studies reveal the formation of single ferrite phase with particle size of similar to 11-35 nm. Due to increase in electron density with in a material, X-ray density increase with increase of Cu2+ ions concentration. As Cu2+ ions concentration increases, saturation magnetization decreases from 38.5 to 26.7 emu g(-1). Further, the squareness ratio was found to be similar to 0.31-0.46 which was well below the typical value 1, which indicates the existence of single domain isolated ferrimagnetic samples. The dielectric and electrical modulus was studied over a frequency range of 1 Hz to 1 MHz at room temperature using the complex impedance spectroscopy technique. Impedance plots showed only one semi-circle which corresponds to the contributions of grain boundaries. The lower values of dielectric loss at higher frequency region may be quite useful for high frequency applications such as microwave devices. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ni-Fe-Ga-based alloys form a new class of ferromagnetic shape memory alloys (FSMAs) that show considerable formability because of the presence of a disordered fcc gamma-phase. The current study explores the deformation processing of this alloy using an off-stoichiometric Ni55Fe59Ga26 alloy that contains the ductile gamma-phase. The hot deformation behavior of this alloy has been characterized on the basis of its flow stress variation obtained by isothermal constant true strain rate compression tests in the 1123-1323 K temperature range and strain rate range of 10(-3)-10 s(-1) and using a combination of constitutive modeling and processing map. The dynamic recrystallization (DRX) regime for thermomechanical processing has been identified for this Heusler alloy on the basis of the processing maps and the deformed microstructures. This alloy also shows evidence of dynamic strain-aging (DSA) effect which has not been reported so far for any Heusler FSMAs. Similar effect is also noticed in a Ni-Mn-Ga-based Heusler alloy which is devoid of any gamma-phase. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical transport behavior of organic photo-voltaic devices with nano-pillar transparent electrodes is investigated in this paper in order to understand possible enhancement of their charge-collection efficiency. Modeling and simulations of optical transport due to this architecture show an interesting regime of length-scale dependent optical characteristics. An electromagnetic wave propagation model is employed with simulation objectives toward understanding the mechanism of optical scattering and waveguide effects due to the nano-pillars and effective transmission through the active layer. Partial filling of gaps between the nano-pillars due to the nano-fabrication process is taken into consideration. Observations made in this paper will facilitate appropriate design rules for nano-pillar electrodes. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of hydrogen (H) charging on the shear yield strength (tau(max)) and shear transformation zone volume (Omega) of Ni-Nb-Zr metallic glass ribbons, with varying Zr content, were studied through the first pop-in loads during nanoindentation. Weight gain measurements after H charging and desorption studies were utilized to identify how the total H absorbed during charging is partitioned into mobile and immobile (or trapped) parts. These, in turn, indicate the significant role of H mobility in the amorphous structure on the yielding behavior. In high-Zr alloys, tau(max) increases significantly whereas Omega decreases. In low-Zr alloys, a slight decrease in tau(max) and increase in Omega were noted. These experimental observations are rationalized in terms of the mobility of the absorbed H in the amorphous structure and the possible role of it in the shear transformation zone dynamics during deformation of the metallic glass. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the preparation, analysis, and phase transformation behavior of polymorphs and the hydrate of 4-amino-3,5-dinitrobenzamide. The compound crystallizes in four different polymorphic forms, Form I (monoclinic, P2(1)/n), Form II (orthorhombic, Pbca), Form III (monoclinic, P2(1)/c), and Form IV (monoclinic, P2(1)/c). Interestingly, a hydrate (triclinic, P (1) over bar) of the compound is also discovered during the systematic identification of the polymorphs. Analysis of the polymorphs has been investigated using hot stage microscopy, differential scanning calorimetry, in situ variable-temperature powder X-ray diffraction, and single-crystal X-ray diffraction. On heating, all of the solid forms convert into Form I irreversibly, and on further heating, melting is observed. In situ single-crystal X-ray diffraction studies revealed that Form II transforms to Form I above 175 degrees C via single-crystal-to-single-crystal transformation. The hydrate, on heating, undergoes a double phase transition, first to Form III upon losing water in a single-crystal-to-single-crystal fashion and then to a more stable polymorph Form I on further heating. Thermal analysis leads to the conclusion that Form II appears to be the most stable phase at ambient conditions, whereas Form I is more stable at higher temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of silver nanoparticles (sNP) on the demixing and the evolution of morphology in off-critical blends of 90/10 and 10/90 (wt/wt) PS/PVME polystyrene/poly(vinyl methyl ether)] was probed here using shear rheology and optical microscopy. The faster component (PVME) has a higher molecular weight (80 kDa) than the slower component (PS, 35 kDa), which makes this system quite interesting to study with respect to the evolving morphology, as the blends transit through the binodal and the spinodal envelopes. An unusual demixing behavior was observed in both PVME rich and PS rich blends. Temperature modulated differential scanning calorimetry measurements showed that the T-g value for the blends with sNP was slightly lower than that of the neat blends. A decreased volume of cooperativity at T-g suggests confined segmental dynamics in the presence of sNP. Although, the addition of sNP had no influence on the thermodynamic demixing temperature, it significantly altered the elasticity of the minor component during the transition of the blend from the homogeneous to the heterogeneous state. This is manifested from energetically driven localization of the sNP in the PVME phase during demixing. As a direct consequence of this, the formation of the microstructures upon demixing was observed to be delayed in the presence of sNP. Interestingly, in the intermediate quench depth, the higher viscoelastic phase evolved as an interconnected network, which subsequently coarsened into discrete droplets in the late stages for the 90/10 PS/PVME blends. Similar observations were made for 10/90 PS/PVME blends where threads of PVME appeared at deeper quench depths in the presence of sNP. The interconnected network formation of the minor phase (here PVME), which is also the faster component in the blend, was different from the usual demixing behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compressive behavior of graphene foam (GF) and its polymer (polydimethyl siloxane) (PDMS) infiltrated structure are presented. While GF showed an irreversible compressibility, the GF/PDMS structure revealed a highly reversible mechanical behavior up to many cycles of compression and also possesses a six times higher compressive strength. In addition, the strain rate demonstrated a negligible effect on both the maximum achieved stress and energy absorption in the GF/PDMS structure. The mechanical responses of both GF and GF/PDMS structure are compared with carbon nanotubes based cellular structure and its composite with PDMS, where GF/PDMS presented a dominant mechanical characteristic among other carbon based micro foam structures. Therefore, the improved mechanical properties of GF/PDMS suggest its potential for dampers, cushions, packaging, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon Fiber Reinforced Plastic composites were fabricated through vacuum resin infusion technology by adopting two different processing conditions, viz., vacuum only in the first and vacuum plus external pressure in the next, in order to generate two levels of void-bearing samples. They were relatively graded as higher and lower void-bearing ones, respectively. Microscopy and C-scan techniques were utilized to describe the presence of voids arising from the two different processing parameters. Further, to determine the influence of voids on impact behavior, the fabricated +45 degrees/90 degrees/-45 degrees composite samples were subjected to low velocity impacts. The tests show impact properties like peak load and energy to peak load registering higher values for the lower void-bearing case where as the total energy, energy for propagation and ductility indexes were higher for the higher void-bearing ones. Fractographic analysis showed that higher void-bearing samples display lower number of separation of layers in the laminate. These and other results are described and discussed in this report.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frugivores with disparate foraging behavior are considered to vary in their seed dispersal effectiveness (SDE). Measured SDEs for gibbons and macaques for a primate-fruit' were comparable despite the different foraging and movement behavior of the primates. This could help facilitate fruit trait convergence in diverse fruit-frugivore networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undoped and Sn-doped WO3 thin films were grown on cleaned glass substrates by chemical spray pyrolysis, using ammonium tungstate (NH4)(2)WO4 as the host precursor and tin chloride (SnCl4 center dot 5H(2)O) as the source of dopant. The XRD spectra confirm the monoclinic structure with a sharp narrow peak along (200) direction along with other peaks of low relative intensities for all the samples. On Sn doping, the films exhibit reduced crystallinity relative to the undoped film. The standard deviation for relative peak intensity with dopant concentration shows enhancement in heterogeneous nucleation growth. As evident from SEM images, on Sn doping, appearance of island-like structure (i.e., cluster of primary crystallites at few places) takes place. The transmittance has been found to decrease in all the Sn-doped films. The optical band gap has been calculated for both direct and indirect transitions. On Sn doping, the direct band gap shows a red shift and becomes 2.89 eV at 2 at.% doping. Two distinct peaks, one blue emission at 408 nm and other green emission at 533 nm, have been found in the PL spectra. Electrical conductivity has been found to increase with Sn doping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple ball-drop impact tester is developed for studying the dynamic response of hierarchical, complex, small-sized systems and materials. The developed algorithm and set-up have provisions for applying programmable potential difference along the height of a test specimen during an impact loading; this enables us to conduct experiments on various materials and smart structures whose mechanical behavior is sensitive to electric field. The software-hardware system allows not only acquisition of dynamic force-time data at very fast sampling rate (up to 2 x 10(6) samples/s), but also application of a pre-set potential difference (up to +/- 10 V) across a test specimen for a duration determined by feedback from the force-time data. We illustrate the functioning of the set-up by studying the effect of electric field on the energy absorption capability of carbon nanotube foams of 5 x 5 x 1.2 mm(3) size under impact conditions. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature dependent acoustic phonon behavior of PbWO4 and BaWO4 using Brillouin spectroscopy has been explained for the first time. Low temperature Brillouin studies on PbWO4 and BaWO4 have been carried out from 320-20 K. In PbWO4, we observe a change in acoustic phonon mode behavior around 180 K. But in the case of BaWO4, we have observed two types of change in acoustic phonon mode behavior at 240 K and 130 K. The change in Brillouin shift omega and the slope d omega/dT are the order parameter for all kinds of phase transitions. Since we do not see hysteresis on acoustic phonon mode behavior in the reverse temperature experiments, these second order phase transitions are no related to structural phase change and could be related to acoustic phonon coupled electronic transitions. In PbWO4 he temperature driven phase transition at 180 K could be due to changes in he environment around he lead vacancy (V-pb(2-)) changes the electronic states. In the case of BaWO4, the phase transition at 240 K shows he decrease in penetration depth of WO3 impurity. So it becomes more metallic. The transition at 130 K could be he same electronic transitions as that of PbWO4 as function of temperature. The sound velocity and elastic moduli of BaWO4 shows that it could be the prominent material for acousto-optic device applications. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we report studies on the antioxidant activity and redox behavior of curcumin and its structurally modified synthetic analogues. We have synthesized a number of analogues of curcumin which abrogate its keto-enol tautomerism or substitute the methylene group at the centre of its heptadione moiety implicated in the hydride transfer and studied their redox property. From cyclic voltammetric studies, it is demonstrated that H-atom transfer from CH2 group at the center of the heptadione link also plays an important role in the antioxidant properties of curcumin along with that of its phenolic -OH group. In addition, we also show that the conversion of 1, 3-dicarbonyl moiety of curcumin to an isosteric heterocycle as in pyrazole curcumin, which decreases its rotational freedom, leads to an improvement of its redox properties as well as its antioxidant activity. (C) 2014 Elsevier Ltd. All rights reserved.