898 resultados para nanostructured ultrathin films
Resumo:
Conversion electron Mossbauer spectra of composition modulated FeSi thin films have been analysed within the framework of a quasi shape independent model in which the distribution function for the hyperfine fields is assumed to be given by a binomial distribution. Both the hyperfine field and the hyperfine field distribution depend on the modulation characteristic length.
Resumo:
Using atomic force microscopy we have studied the nanomechanical response to nanoindentations of surfaces of highly oriented molecular organic thin films (thickness¿1000¿nm). The Young¿s modulus E can be estimated from the elastic deformation using Hertzian mechanics. For the quasi-one-dimensional metal tetrathiafulvalene tetracyanoquinodimethane E~20¿GPa and for the ¿ phase of the p-nitrophenyl nitronyl nitroxide radical E~2GPa. Above a few GPa, the surfaces deform plastically as evidenced by discrete discontinuities in the indentation curves associated to molecular layers being expelled by the penetrating tip.
Resumo:
The present study discusses the effect of iron doping in TiO2 thin films deposited by rf sputtering. Iron doping induces a structural transformation from anatase to rutile and electrical measurements indicate that iron acts as an acceptor impurity. Thermoelectric power measurement shows a transition between n-type and p-type electrical conduction for an iron concentration around 0.13 at.%. The highest p-type conductivity at room temperature achieved by iron doping was 10(-6) S m(-1).
Resumo:
Selostus: Syötävien gluteenikalvojen valmistus, ominaisuudt ja eräät käyttösovellukset
Resumo:
In recent years, ultra-thin whitetopping (UTW) has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavement. Numerous UTW projects have been constructed and tested, enabling researchers to identify key elements contributing to their successful performance. These elements include foundation support, interface bonding condition, portland cement concrete (PCC) overlay thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. The interface bonding condition is the most important of these elements. It enables the pavement to act as a composite structure, thus reducing tensile stresses and allowing an ultra-thin PCC overlay to perform as intended. The Iowa Department of Transportation (Iowa DOT) UTW project (HR-559) initiated UTW in Iowa. The project is located on Iowa Highway 21 between Iowa Highway 212 and U.S. Highway 6 in Iowa County, near Belle Plaine, Iowa. The objective of this research was to investigate the interface bonding condition between an ultra-thin PCC overlay and an ACC base over time, considering the previously mentioned variables. This research lasted for five years, at which time it was extended an additional five years. The new phase of the project was initiated by removing cracked panels existing in the 2-inch thick PCC sections and replacing them with three inches of PCC. The project extension (TR 432) will provide an increased understanding of slab bonding conditions over a longer period, as well as knowledge regarding the behavior of the newly rehabilitated areas. In order to accomplish the goals of the project extension, Falling Weight Deflectometer (FWD) testing will continue to be conducted. Laboratory testing, field strain gage implementation, and coring will no longer be conducted. This report documents the planning and construction of the rehabilitation of HR 559 and the beginning of TR 432 during August of 1999.
Resumo:
The paper commented on here R. M. C. de Almeida, S. Gonçalves, I. J. R. Baumvol and F. C. Stedile Phys. Rev. B 61 12992 (2000) claims that the Deal and Grove model of oxidation is unable to describe the kinetics in the thin oxide regime due to two main simplifications: (a) the steady-state assumption and (b) the abrupt Si∕SiO2 interface assumption. Although reasonably good fits are obtained without these simplifications, it will be shown that the values of the kinetic parameters are not reliable and that the solutions given for different partial pressures are erroneous. Finally, it will be shown that the correct solution of their model is unable to predict the oxidation rate enhancement observed in the thin oxide regime and that the predicted width of the interface compatible with the Deal and Grove rate constants is too large
Resumo:
The structural saturation and stability, the energy gap, and the density of states of a series of small, silicon-based clusters have been studied by means of the PM3 and some ab initio (HF/6-31G* and 6-311++G**, CIS/6-31G* and MP2/6-31G*) calculations. It is shown that in order to maintain a stable nanometric and tetrahedral silicon crystallite and remove the gap states, the saturation atom or species such as H, F, Cl, OH, O, or N is necessary, and that both the cluster size and the surface species affect the energetic distribution of the density of states. This research suggests that the visible luminescence in the silicon-based nanostructured material essentially arises from the nanometric and crystalline silicon domains but is affected and protected by the surface species, and we have thus linked most of the proposed mechanisms of luminescence for the porous silicon, e.g., the quantum confinement effect due to the cluster size and the effect of Si-based surface complexes.
Film Propaganda and the Balance between Neutrality and Alignment: Nazi Films in Switzerland, 1933-45
Resumo:
The Iowa Department of Transportation (Iowa DOT) UTW Project (HR-559) initiated Ultra-Thin Whitetopping in Iowa. The project is located on Iowa Highway 21 between Iowa Highway 212 and U.S. Highway 6 in Iowa County, near Belle Plaine, Iowa. The above listed research project lasted for five years, and then was extended for another five year period. The new phase of the project (TR 432) was initiated by removing cracked panels existing in the 2-inch thick PCC sections and replacing them with three inches of PCC. The project extension provides an increased understanding of slab bonding conditions over a longer period, as well as knowledge regarding the behavior of the newly rehabilitated areas. This report documents the rehabilitation of the PCC patching of all fractured panels and several cracked panels, taking place in September of 2001.
Resumo:
Antimicrobial films were prepared by including enterocins to alginate, polyvinyl alcohol (PVOH), and zein films. The physical performance of the films was assessed by measuring color, microstructure (SEM), water vapor permeability (WVP), and tensile properties. All studied biopolymers showed poor WVP and limited tensile properties. PVOH showed the best performance exhibiting the lowest WVP values, higher tensile properties, and flexibility among studied biopolymers. SEM of antimicrobial films showed increased presence of voids and pores as a consequence of enterocin addition. However, changes in microstructure did not disturb WVP of films. Moreover, enterocin-containing films showed slight improvement compared to control films. Addition of enterocins to PVOH films had a plasticizing effect, by reducing its tensile strength and increasing the strain at break. The presence of enterocins had an important effect on tensile properties of zein films by significantly reducing its brittleness. Addition of enterocins, thus, proved not to disturb the physical performance of studied biopolymers. Development of new antimicrobial biodegradable packaging materials may contribute to improving food safety while reducing environmental impact derived from packaging waste.
Resumo:
Many cities in Iowa have retained the original brick street surfaces in downtown areas and in older residential areas as the base for modern driving surfaces. The original brick surfaces were not built to handle current and future traffic loadings. In recent years, these surfaces have tended to shift and become uneven, creating problems with safety. Asphaltic concrete overlays have been the typical rehabilitation technique in these situations. This has proven to be a successful rehabilitation technique in some cases; in other cases, the combination of movement of the brick and flexibility of the asphalt has proven to accentuate the original problems. Most of the existing literature on rehabilitation of brick streets shows the use of asphaltic concrete. Other rehabilitation methods include reconstruction of the brick surface and strengthening of the surface by placing asphaltic concrete or portland cement concrete, along with sand, underneath the brick layers. To date, little if anything has been done in the area of using portland cement concrete as an overlay of the brick surfaces. This final report documents the planning, construction, and performance of unbonded ultrathin whitetopping rehabilitation of a brick street in Oskaloosa, Iowa, in 2001. It also reports on a similar project in Des Moines that was constructed two years later in 2003.