970 resultados para nanofiber membranes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, society has been increasingly concerned with bacteria that are no longer susceptible to commercial antibiotics. Faced with a lack of tools, medical practitioners today are forced to prescribe medicines that, although effective, cause as much harm to the patient as the principal infection. The purpose of this research project is to develop novel antibacterials that remain potent against bacterial infections without being toxic to the patient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatty acid translocase (FAT/CD36) is a transport protein with a high affinity for long-chain fatty acids (LCFA). It was recently identified on rat skeletal muscle mitochondrial membranes and found to be required for palmitate uptake and oxidation. Our aim was to identify the presence and elucidate the role of FAT/CD36 on human skeletal muscle mitochondrial membranes. We demonstrate that FAT/CD36 is present in highly purified human skeletal mitochondria. Blocking of human muscle mitochondrial FAT/CD36 with the specific inhibitor sulfo-N-succimidyl-oleate (SSO) decreased palmitate oxidation in a dose-dependent manner. At maximal SSO concentrations (200 μM) palmitate oxidation was decreased by 95% (P < 0.01), suggesting an important role for FAT/CD36 in LCFA transport across the mitochondrial membranes. SSO treatment of mitochondria did not affect mitochondrial octanoate oxidation and had no effect on maximal and submaximal carnitine palmitoyltransferase I (CPT I) activity. However, SSO treatment did inhibit palmitoylcarnitine oxidation by 92% (P < 0.001), suggesting that FAT/CD36 may be playing a role downstream of CPT I activity, possibly in the transfer of palmitoylcarnitine from CPT I to carnitine-acylcarnitine translocase. These data provide new insight regarding human skeletal muscle mitochondrial fatty acid (FA) transport, and suggest that FAT/CD36 could be involved in the cellular and mitochondrial adaptations resulting in improved and/or impaired states of FA oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal oxide chemiresistors (MOCs) with a low optimal operating temperature, high sensitivity and fast response/recovery are highly promising for various applications, but remain challenging to realize. Herein, we demonstrate that SnO2 nanofibers after being co-doped with Cu2+ and Au show considerably enhanced sensing performances at an unexpectedly decreased operating temperature. A synergistic effect occurs when the two dopants are introduced together. Co-doping may form a novel strategy to the development of ultrasensitive MOCs working at a low optimal temperature. This journal is © the Partner Organisations 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biofilm formation on membranes during water desalination operation and pre-treatments limits performance and causes premature membrane degradation. Here, we apply a novel surface modification technique to incorporate anti-microbial metal particles into the outer layer of four types of commercial polymeric membranes by cold spray. The particles are anchored on the membrane surface by partial embedment within the polymer matrix. Although clear differences in particle surface loadings and response to the cold spray were shown by SEM, the hybrid micro-filtration and ultra-filtration membranes were found to exhibit excellent anti-bacterial properties. Poly(sulfone) ultra-filtration membranes were used as for cross-flow filtration of Escherichia coli bacteria solutions to investigate the impact of the cold spray on the material[U+05F3]s integrity. The membranes were characterized by SEM-EDS, FT-IR and TGA and challenged in filtration tests. No bacteria passed through the membrane and filtrate water quality was good, indicating the membranes remained intact. No intact bacteria were found on hybrid membranes, loaded with up to 15. wt% silver, indicating the treatment was lysing bacteria on contact. However, permeation of the hybrid membranes was found to be reduced compared to control non-modified poly(sulfone) membranes due to the presence of the particles across the membrane material. The implementation of cold spray technology for the modification of commercial membrane products could lead to significant operational savings in the field of desalination and water pre-treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid composite membranes have great potential for desalination applications since water transport can be favorably promoted by selective diffusion at the interface between matrix and reinforcement materials. In this paper, graphene oxide nano-sheets were successfully incorporated across 200nm thick poly(amide) films by interfacial polymerization to form novel thin-film composite membranes. The impact of the graphene oxide on the morphology, chemistry, and surface charge of the ultra-thin poly(amide) layer, and the ability to desalinate seawater was investigated. The graphene oxide nano-sheets were found to be well dispersed across the composite membranes, leading to a lower membrane surface energy and an enhanced hydrophilicity. The iso-electric point of the samples, key to surface charge repulsion during desalination, was found to be consistently shifted to higher pH values with an increasing graphene oxide content. Compared to a pristine poly(amide) membrane, the pure water flux across the composite membranes with 0.12wt.% of graphene oxide was also found to increase by up to 80% from 0.122 to 0.219L·μm·m-2·h-1·bar-1 without significantly affecting salt selectivity. Furthermore, the inhibitory effects of the composite membrane on microbial growth were evaluated and the novel composite membranes exhibited superior anti-microbial activity and may act as a potential anti-fouling membrane material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characterization of novel metal reinforced electro-dialysis ion exchange membranes, for water desalination, by attenuated total reflectance Fourier transform infrared spectroscopy mapping is presented in this paper. The surface of the porous stainless steel fibre meshes was treated in order to enhance the amount of surface oxide groups and increase the material hydrophilicity. Then, the metal membranes were functionalized through a sol-gel reaction with silane coupling agents to enhance the affinity with the ion exchange resins and avoid premature metal oxidation due to redox reactions at the metal-polymer interface. Polished cross sections of the composite membranes embedded into an epoxy resin revealed interfaces between metallic frameworks and the silane layer at the interface with the ion exchange material. The morphology of the metal-polymer interface was investigated with scanning electron microscopy and Fourier transform infrared micro-spectroscopy. Fourier transform infrared mapping of the interfaces was performed using the attenuated total reflectance mode on the polished cross-sections at the Australian Synchrotron. The nature of the interface between the metal framework and the ion exchange resin was shown to be homogeneous and the coating thickness was found to be around 1 μm determined by Fourier transform infrared micro-spectroscopy mapping. The impact of the coating on the properties of the membranes and their potential for water desalination by electro-dialysis are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanofibers possess high surface area and excellent porosity. Though nanofibers can be produced by a variety of techniques, electrospinning stands distinct because of its simplicity and flexibility in processing different polymer materials, and ability to control fiber diameter, morphology, orientation, and chemical component. Nonetheless, electrospun nanofibers are predominantly produced in the form of randomly oriented fiber webs, which restrict their wide use. Converting nanofibers into twisted continuous bundles, i.e., nanofiber yarns, can improve their strength and facilitate their subsequent processes, but remains challenging to make. Nanofiber yarns also create enormous opportunities to develop well-defined three-dimensional nanofibrous architectures. This review article gives an overview of the state-of-the-art techniques for electrospinning of nanofiber yarns and control of nanofiber alignment. A detailed account on techniques to produce twisted/non-twisted short bundles and continuous yarns are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the possibility of producing cellulose nanofiber from softwood pulp using a simple ball milling technique under ambient pressure and at room temperature. The effects of milling conditions including the ball-to-cellulose mass ratio, milling time, ball size and alkaline pretreatment were investigated. It was found that milling-ball size should be carefully selected for producing fibrous morphologies instead of particulates. Milling time and ball-to-cellulose mass ratio were also found important to control the fiber morphology. Alkali pre-treatment helped in weakening hydrogen bonds between cellulose fibrils and removing small particles, but with the risks of damaging the fibrous morphology. In a typical run, cellulose nanofiber with an average diameter of 100 nm was obtained using soft mechanical milling conditions using cerium-doped zirconia balls of 0.4–0.6 mm in diameter within 1.5 h without alkaline pretreatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precursor fibers with diameters in nanometer scale and highly aligned polymer chains in fibers are highly promising for the preparation of high-performance carbon nanofibers, but are challenging to make. In this study, we demonstrate for the first time that a carbon nanofiber precursor can be prepared by the electrospinning of polyacrylonitrile into a nanofiber yarn and by the subsequent drawing treatment of the yarn in dry conditions. The yarn shows excellent drawing performance, which can be drawn evenly up to 6 times of its original length without breaking. The drawing treatment improves the yarn and fiber uniformity, polymer chain orientation within the fibers, as well as yarn tension and modules, but shows decreased yarn and fiber diameter and elongation at break. The drawing temperature and force show influences on the drawing behavior. The highest strength and modules (362 ± 37 MPa and 9.2 ± 1.4 GPa, respectively) are found on the yarn drawn by 5 times its length, which increased by 800% and 1800% when compared to the as-spun yarn. Through un-optimized stabilization and carbonization treatments, we further demonstrate that the carbonized nanofiber yarn shows comparable tensile properties as the commercial carbon fibers. Electrospun nanofiber yarns may form next generation precursors for making high performance carbon fibers. This journal is

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superhydrophilic and superoleophobic materials are very attractive for efficient and cost-effective oil-water separation, but also very challenging to prepare. Reported herein is a new superamphiphobic coating that turns superhydrophilic and superoleophobic upon ammonia exposure. The coating is prepared from a mixture of silica nanoparticles and heptadecafluorononanoic acid-modified TiO2 sol by a facile dip-coating method. Commonly used materials, including polyester fabric and polyurethane sponge, modified with this coating show unusual capabilities for controllable filtration of an oil-water mixture and selective removal of water from bulk oil. We anticipate that this novel coating may lead to the development of advanced oil-water separation techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salt and solvent permeations across ion-exchange membranes used in electro-dialysis are directly related to the membrane material structure and chemistry. Although primarily used for aqueous effluents desalination, electro-dialysis was recently shown to be a promising technology for industrial wastewater and co-solvent mixtures purification. The harsh working conditions imposed by these liquid effluents, including high suspended solids, require the development of more chemically and mechanically resistant membranes. In this study, commercial porous stainless steel media filters (240 μm thick) were used as a backbone to prepare hybrid ion-exchange membranes by casting ion-exchange materials within the porous metal structure. The surface of the metal reinforcements was modified by plasma treatment prior to sol-gel silane grafting to improve the interface between the metal and the ion-exchange resins. The morphology of novel hybrid materials and the interface between the metal fibers and the ion-exchange material have been characterized using techniques such as scanning electron microscopy and FTIR mapping. The thickness of the silane coating was found to lie between 1 and 2 μm while water contact angle tests performed on membrane surfaces and corrosion test behaviors revealed the formation of a thin passivating oxide layer on the material surfaces providing anchoring for the silane grafting and adequate surface energy for the proper incorporation of the ion-exchange material. The hybrid membranes desalination performance were then tested in a bench top electro-dialysis cell over a range of flow rate, current densities and salt concentration conditions to evaluate the ability of the novel hybrid materials to desalinate model streams. The performance of the hybrid membranes were benchmarked and critically compared against commercially available membranes (Selemion™). Although the salt transfer kinetics across the hybrid ion-exchange composite membranes were shown to be comparable to that of the commercial membranes, the low porosity of the stainless steel reinforcements, around 60%, was shown to impede absolute salt permeations. The hybrid ion-exchange membranes were however found to be competitive at low current density and low flow velocity desalination conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salt and solvent permeations across ion-exchange membranes used in electro-dialysis are directly related to the membrane material structure and chemistry. Although primarily used for aqueous effluents desalination, electro-dialysis was recently shown to be a promising technology for industrial wastewater and co-solvent mixtures purification. The harsh working conditions imposed by these liquid effluents, including high suspended solids, require the development of more chemically and mechanically resistant membranes. In this study, commercial porous stainless steel media filters (240. μm thick) were used as a backbone to prepare hybrid ion-exchange membranes by casting ion-exchange materials within the porous metal structure. The surface of the metal reinforcements was modified by plasma treatment prior to sol-gel silane grafting to improve the interface between the metal and the ion-exchange resins. The morphology of novel hybrid materials and the interface between the metal fibers and the ion-exchange material have been characterized using techniques such as scanning electron microscopy and FTIR mapping. The thickness of the silane coating was found to lie between 1 and 2. μm while water contact angle tests performed on membrane surfaces and corrosion test behaviors revealed the formation of a thin passivating oxide layer on the material surfaces providing anchoring for the silane grafting and adequate surface energy for the proper incorporation of the ion-exchange material. The hybrid membranes desalination performance were then tested in a bench top electro-dialysis cell over a range of flow rate, current densities and salt concentration conditions to evaluate the ability of the novel hybrid materials to desalinate model streams. The performance of the hybrid membranes were benchmarked and critically compared against commercially available membranes (Selemion™). Although the salt transfer kinetics across the hybrid ion-exchange composite membranes were shown to be comparable to that of the commercial membranes, the low porosity of the stainless steel reinforcements, around 60%, was shown to impede absolute salt permeations. The hybrid ion-exchange membranes were however found to be competitive at low current density and low flow velocity desalination conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.