968 resultados para muscle hypertrophy
Resumo:
Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine alpha-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission.
Resumo:
1. In some tissues, a decrease in the number of cell surface receptors and alterations of the receptor coupling have been proposed as possible mechanisms mediating the deleterious effects of bacterial endotoxin in septic shock. 2. The effects of bacterial lipopolysaccharide (Escherichia coli 0111-B4; LPS) on vascular angiotensin II and vasopressin receptors have been examined in cultured aortic smooth muscle cells (SMC) of the rat by use of radioligand binding techniques. 3. In vascular SMC exposed to 1 micrograms ml-1 endotoxin for 24 h, a significant increase in angiotensin II binding was found. The change in [125I]-angiotensin II binding corresponded to an increase in the number of receptors whereas the affinity of the receptors was not affected by LPS. In contrast, no change in [3H]-vasopressin binding was observed. 4. The pharmacological characterization of angiotensin II binding sites in control and LPS-exposed cells demonstrated that LPS induced an increase in the AT1 subtype of the angiotensin II receptors. Receptor coupling as evaluated by measuring total inositol phosphates was not impaired by LPS. 5. The effect of LPS on the angiotensin II receptor was dose-, time- and protein-synthesis dependent and was associated with an increased expression of the receptor gene. 6. The ability of LPS to increase angiotensin II binding in cultured vascular SMC was independent of the endotoxin induction of NO-synthase. 7. These results suggest that, besides inducing factors such as cytokines and NO-synthase, endotoxin may enhance the expression of cell surface receptors. The surprising increase in angiotensin II binding in LPS exposed VSM cells may represent an attempt by the cells to compensate for the decreased vascular responsiveness. It may also result from a non-specific LPS-related induction of genes.
Resumo:
BACKGROUND: Prospective assessment of pedicled extrathoracic muscle flaps for the closure of large intrathoracic airway defects after noncircumferential resection in situations where an end-to-end reconstruction seemed risky (defects of > 4-cm length, desmoplastic reactions after previous infection or radiochemotherapy). METHODS: From 1996 to 2001, 13 intrathoracic muscle transpositions (6 latissimus dorsi and 7 serratus anterior muscle flaps) were performed to close defects of the intrathoracic airways after noncircumferential resection for tumor (n = 5), large tracheoesophageal fistula (n = 2), delayed tracheal injury (n = 1) and bronchopleural fistula (n = 5). In 2 patients, the extent of the tracheal defect required reinforcement of the reconstruction by use of a rib segment embedded into the muscle flap followed by temporary tracheal stenting. Patient follow-up was by clinical examination bronchoscopy and biopsy, pulmonary function tests, and dynamic virtual bronchoscopy by computed tomographic (CT) scan during inspiration and expiration. RESULTS: The airway defects ranged from 2 x 1 cm to 8 x 4 cm and involved up to 50% of the airway circumference. They were all successfully closed using muscle flaps with no mortality and all patients were extubated within 24 hours. Bronchoscopy revealed epithelialization of the reconstructions without dehiscence, stenosis, or recurrence of fistulas. The flow-volume loop was preserved in all patients and dynamic virtual bronchoscopy revealed no significant difference in the endoluminal cross surface areas of the airway between inspiration and expiration above (45 +/- 21 mm(2)), at the site (76 +/- 23 mm(2)) and below the reconstruction (65 +/- 40 mm(2)). CONCLUSIONS: Intrathoracic airway defects of up to 50% of the circumference may be repaired using extrathoracic muscle flaps when an end-to-end reconstruction is not feasible.
Resumo:
INTRODUCTION: Smoothelin is a cytoskeletal protein of differentiated smooth muscle cells with contractile capacity, distinguishing it from other smooth muscle proteins, such as smooth muscle actin (SMA). OBJECTIVE: To evaluate the expression of smoothelin and SMA in the skin in order to establish specific localizations of smoothelin in smooth muscle cells with high contractile capacity and in the epithelial component of cutaneous adnexal structures. Methods: Immunohistochemical analysis (smoothelin and SMA) was performed in 18 patients with normal skin. RESULTS: SMA was expressed by the vascular structures of superficial, deep, intermediate and adventitial plexuses, whereas smoothelin was specifically expressed in the cytoplasm of smooth muscle cells of the deepest vascular plexus and in no other plexus of the dermis. The hair erector muscle showed intense expression of smoothelin and SMA. Cells with nuclear expression of smoothelin and cytoplasmic expression of SMA were observed in the outer root sheath of the inferior portion of the hair follicles and intense cytoplasmic expression in cells of the dermal sheath to SMA. CONCLUSIONS: We report the first study of smoothelin expression in normal skin, which differentiates the superficial vascular plexus from the deep. The deep plexus comprises vessels with high contractile capacity, which is important for understanding dermal hemodynamics in normal skin and pathological processes. We suggest that the function of smoothelin in the outer root sheath may be to enhance the function of SMA, which has been related to mechanical stress. Smoothelin has not been studied in cutaneous pathology; however we believe it may be a marker specific for the diagnosis of leiomyomas and leiomyosarcomas of the skin. Also, smoothelin could differentiate arteriovenous malformations of cavernous hemangioma of the skin
Resumo:
Infection by the protozoan parasite Toxoplasma gondii is widely prevalent in humans and animals. To prevent human infection, all meat should be well cooked before consumption, since the parasite is present in skeletal muscle. In this context, the use of skeletal muscle cells (SkMCs) as a cellular model opens up new approaches to investigate T. gondii-host cell interactions. Immunofluorescent detection of proteins that are stage-specific for bradyzoites indicated that complete cystogenesis of T. gondii in in vitro cultures of SkMCs occurs after 96 h of infection. Ultrastructural analysis showed that, after 48 h of interaction, there were alterations on the parasitophorous vacuole membrane, including greater thickness and increased electron density at the inner face of the membrane. The present study demonstrates the potential use of primary cultures of SkMCs to evaluate different molecular aspects of T. gondii invasion and cystogenesis and presents a promising in vitro model for the screening of drug activities toward tissue cysts and bradyzoites.
Resumo:
Although the predilection for Toxoplasma gondii to form cysts in the nervous system and skeletal and heart muscles has been described for more than fifty years, skeletal muscle cells (SkMCs) have not been explored as a host cell type to study the Toxoplasma-host cell interaction and investigate the intracellular development of the parasite. Morphological aspects of the initial events in the Toxoplasma-SkMC interaction were analysed and suggest that there are different processes of protozoan adhesion and invasion and of the subsequent fate of the parasite inside the parasitophorous vacuole (PV). Using scanning electron microscopy,Toxoplasma tachyzoites from the mouse-virulent RH strain were found to be attached to SkMCs by the anterior or posterior region of the body, with or without expansion of the SkMC membrane. This suggests that different types of parasite internalization occurred. Asynchronous multiplication and differentiation of T. gondii were observed. Importantly, intracellular parasites were seen to display high amounts of amylopectin granules in their cytoplasm, indicating that tachyzoites of the RH strain were able to differentiate spontaneously into bradyzoites in SkMCs. This stage conversion occurred in approximately 3% of the PVs. This is particularly intriguing as tachyzoites of virulent Toxoplasma strains are not thought to be prone to cyst formation. We discuss whether biological differences in host cells are crucial to Toxoplasma stage conversion and suggest that important questions concerning the host cell type and its relevance in Toxoplasma differentiation are still unanswered.
Resumo:
Recent evidence has emerged that peroxisome proliferator-activated receptor alpha (PPARalpha), which is largely involved in lipid metabolism, can play an important role in connecting circadian biology and metabolism. In the present study, we investigated the mechanisms by which PPARalpha influences the pacemakers acting in the central clock located in the suprachiasmatic nucleus and in the peripheral oscillator of the liver. We demonstrate that PPARalpha plays a specific role in the peripheral circadian control because it is required to maintain the circadian rhythm of the master clock gene brain and muscle Arnt-like protein 1 (bmal1) in vivo. This regulation occurs via a direct binding of PPARalpha on a potential PPARalpha response element located in the bmal1 promoter. Reversely, BMAL1 is an upstream regulator of PPARalpha gene expression. We further demonstrate that fenofibrate induces circadian rhythm of clock gene expression in cell culture and up-regulates hepatic bmal1 in vivo. Together, these results provide evidence for an additional regulatory feedback loop involving BMAL1 and PPARalpha in peripheral clocks.
Resumo:
In a prospective nonrandomized study, using each baby as his or her own control, we compared intracranial pressure (anterior fontanel pressure as measured with the Digilab pneumotonometer), cerebral perfusion pressure, BP, heart rate, transcutaneous Po2, and transcutaneous Pco2 before, during, and after endotracheal suctioning, with and without muscle paralysis, in 28 critically ill preterm infants with respiratory distress syndrome. With suctioning, there was a small but significant increase in intracranial pressure in paralyzed patients (from 13.7 [mean] +/- 4.4 mm Hg [SD] to 15.8 +/- 5.2 mm Hg) but a significantly larger (P less than .001) increase when they were not paralyzed (from 12.5 +/- 3.6 to 28.5 +/- 8.3 mm Hg). Suctioning led to a slight increase in BP with (from 45.3 +/- 9.1 to 48.0 +/- 8.7 mm Hg) and without muscle paralysis (from 45.1 +/- 9.4 to 50.0 +/- 11.7 mm Hg); but there was no significant difference between the two groups. The cerebral perfusion pressure in paralyzed infants did not show any significant change before, during, and after suctioning (31.5 +/- 9.1 mm Hg before v 32.0 +/- 8.7 mm Hg during suctioning), but without muscle paralysis cerebral perfusion pressure decreased (P less than .001) from 32.8 +/- 9.7 to 21.3 +/- 13.1 mm Hg. Suctioning induced a slight decrease in mean heart rate and transcutaneous Po2, but pancuronium did not alter these changes. There was no statistical difference in transcutaneous Pco2 before, during, and after suctioning with and without muscle paralysis.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The brain regulates all metabolic processes within the organism, and therefore, its energy supply is preserved even during fasting. However, the underlying mechanism is unknown. Here, it is shown, using (31)P-magnetic resonance spectroscopy that during short periods of hypoglycemia and hyperglycemia, the brain can rapidly increase its high-energy phosphate content, whereas there is no change in skeletal muscle. We investigated the key metabolites of high-energy phosphate metabolism as rapidly available energy stores by (31)P MRS in brain and skeletal muscle of 17 healthy men. Measurements were performed at baseline and during dextrose or insulin-induced hyperglycemia and hypoglycemia. During hyperglycemia, phosphocreatine (PCr) concentrations increased significantly in the brain (P = 0.013), while there was a similar trend in the hypopglycemic condition (P = 0.055). Skeletal muscle content remained constant in both conditions (P > 0.1). ANOVA analyses comparing changes from baseline to the respective glycemic plateau in brain (up to +15%) vs. muscle (up to -4%) revealed clear divergent effects in both conditions (P < 0.05). These effects were reflected by PCr/Pi ratio (P < 0.05). Total ATP concentrations revealed the observed divergency only during hyperglycemia (P = 0.018). These data suggest that the brain, in contrast to peripheral organs, can activate some specific mechanisms to modulate its energy status during variations in glucose supply. A disturbance of these mechanisms may have far-reaching implications for metabolic dysregulation associated with obesity or diabetes mellitus.
Resumo:
BACKGROUND: Nineteen patients were evaluated after closure of intrathoracic esophageal leaks by a pediculated muscle flap onlay repair in the presence of mediastinal and systemic sepsis. METHODS: Intrathoracic esophageal leaks with mediastinitis and systemic sepsis occurred after delayed spontaneous perforations (n = 7) or surgical and endoscopic interventions (n = 12). Six patients presented with fulminant anastomotic leaks. Seven patients had previous attempts to close the leak by surgery (n = 4) or stenting (2) or both (n = 1). The debrided defects measured up to 2 x 12 cm or involved three quarters of the anastomotic circumference and were closed either by a full thickness diaphragmatic flap (n = 13) or a pediculated intrathoracically transposed extrathoracic muscle flap (n = 6). All patients had postoperative contrast esophagography between days 7 and 10 and an endoscopic evaluation 4 to 6 months after surgery. RESULTS: There was no 30-day mortality. During follow-up (4 to 42 months), 16 patients (84%) revealed functional and morphological restoration of the esophagointestinal integrity without further interventions. One patient required serial dilatations for a stricture, and 1 underwent temporary stenting for a persistent fistula; both patients had normal control endoscopy during follow-up. A third patient requiring permanent stenting for stenosis died from gastrointestinal bleeding due to stent erosion during follow-up. CONCLUSIONS: Intrathoracic esophageal leaks may be closed efficiently by a muscle flap onlay approach in the presence of mediastinitis and where a primary repair seems risky. The same holds true for fulminant intrathoracic anastomotic leaks after esophagectomy or other surgical interventions at the gastroesophageal junction.
Resumo:
Introduction: Tissue Renin-Angiotensin System activity is increased in obesity and may contribute to obesity-related hypertension and metabolic abnormalities. This open-label pilot study investigated the local effects of Aliskiren in adipose tissue and skeletal muscle.Methods: After a 1-2 week washout, 10 patients with hypertension and abdominal obesity received placebo for 2 weeks, then Aliskiren 300 mg once daily for 4 weeks, followed by a 4-week washout period and then another 4 weeks treatment period with Amlodipine 5 mg once daily. Drug concentrations and Renin-Angiotensin Systembiomarkers were measured in interstitial fluid employing the microdialysis zero-flow method, and in biopsies from abdominal subcutaneous adipose and skeletal muscle.Results: After 4 weeks treatment, microdialysate concentrations (mean±SD) of Aliskiren were 2.4±2.1 ng/ml in adipose tissue, and 7.1±4.2 ng/ml in skeletal muscle. These concentrations were similar to the mean plasma concentration of 8.4±4.4 ng/ml. Tissue concentrations (ng/g) of Aliskiren were 29.0±16.7 ng/g in adipose tissue, and 107.3±68.6 ng/g in skeletal muscle after 4 weeks treatment. Angiotensin II concentrations in microdialysates were below the lower limit of quantification in most patients, but pooled data from two patients suggested that Angiotensin II was reduced by Aliskiren and unchanged by Amlodipine. Aliskiren 300 mg significantly reduced mean plasma Renin activity by 68% and Angiotensin II by 61% (p<0.05 vs. baseline). Amlodipine 5 mg increased plasma Renin activity by 48% (p<0.05 vs. baseline), and non-significantly increased Angiotensin II by 60%. Both treatments increased plasma Renin concentration.Conclusion: Aliskiren 300 mg once daily penetrates adipose and skeletal muscle tissue at concentrations sufficient to reduce tissue Renin-Angiotensin System activity in obese patients with hypertension.
Resumo:
The Alpine swift (Apus melba) forages on insects caught exclusively on the wing, implying that dependent nestlings face acute food shortage in periods of cold and rainy weather. Therefore, there should be strong selection on nestling swifts to evolve physiological strategies to cope with periods of undernutrition. We have investigated intra-individual changes in nestling pectoral muscle and body temperature in response to a 1-week period of inclement weather. The pectoral muscle is the largest reserves of proteins, and nestlings have to devote a large amount of energy in the maintenance of body temperature. The results show that nestling pectoral muscle size and body temperature were significantly reduced during the episode of inclement weather. Assuming that these physiological changes are adaptive, our study suggests that nestling swifts spare energy by a pronounced reduction (up to 18 degrees C) in body temperature and use proteins from the pectoral muscle as a source of extra energy to survive prolonged periods of fasting.
Resumo:
Els isòtops estables com a traçadors de la cadena alimentària, s'han utilitzat per caracteritzar la relació entre els consumidors i els seus aliments, ja que el fraccionament isotòpic implica una discriminació en contra de certs isòtops. Però les anàlisis d'isòtops estables (SIA), també es poden dur a terme en peixos cultivats amb dietes artificials, com la orada (Sparus aurata), la especie más cultivada en el Mediterráneo. Canvis en l'abundància natural d'isòtops estables (13C i 15N) en els teixits i les seves reserves poden reflectir els canvis en l'ús i reciclatge dels nutrients ja que els enzims catabòlics implicats en els processos de descarboxilació i desaminació mostren una preferència pels isòtops més lleugers. Per tant, aquestes anàlisis ens poden proporcionar informació útil sobre l'estat nutricional i metabòlic dels peixos. L'objectiu d'aquest projecte va ser determinar la capacitat dels isòtops estables per ser utilitzats com a marcadors potencials de la capacitat de creixement i condicions de cria de l'orada. En aquest sentit, les anàlisis d'isòtops estables s'han combinat amb altres metabòlics (activitats citocrom-c-oxidasa, COX, i citrat sintasa, CS) i els paràmetres de creixement (ARN/ADN). El conjunt de resultats obtinguts en els diferents estudis realitzats en aquest projecte demostra que el SIA, en combinació amb altres paràmetres metabòlics, pot servir com una eina eficaç per discriminar els peixos amb millor potencial de creixement, així com a marcador sensible de l'estat nutricional i d'engreix. D'altra banda, la combinació de l'anàlisi d'isòtops estables amb les eines emergents, com ara tècniques de proteòmica (2D-PAGE), ens proporciona nous coneixements sobre els canvis metabòlics que ocorren en els músculs dels peixos durant l‟increment del creixement muscular induït per l'exercici.
Resumo:
Trichomonas vaginalis and Tritrichomonas foetus are parasitic, flagellated protists that inhabit the urogenital tract of humans and bovines, respectively. T. vaginalis causes the most prevalent non-viral sexually transmitted disease worldwide and has been associated with an increased risk for human immunodeficiency virus-1 infection in humans. Infections by T. foetus cause significant losses to the beef industry worldwide due to infertility and spontaneous abortion in cows. Several studies have shown a close association between trichomonads and the epithelium of the urogenital tract. However, little is known concerning the interaction of trichomonads with cells from deeper tissues, such as fibroblasts and muscle cells. Published parasite-host cell interaction studies have reported contradictory results regarding the ability of T. foetus and T. vaginalis to interact with and damage cells of different tissues. In this study, parasite-host cell interactions were examined by culturing primary human fibroblasts obtained from abdominal biopsies performed during plastic surgeries with trichomonads. In addition, mouse 3T3 fibroblasts, primary chick embryo myogenic cells and L6 muscle cells were also used as models of target cells. The parasite-host cell cultures were processed for scanning and transmission electron microscopy and were tested for cell viability and cell death. JC-1 staining, which measures mitochondrial membrane potential, was used to determine whether the parasites induced target cell damage. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling staining was used as an indicator of chromatin damage. The colorimetric crystal violet assay was performed to ana-lyse the cytotoxicity induced by the parasite. The results showed that T. foetus and T. vaginalis adhered to and were cytotoxic to both fibroblasts and muscle cells, indicating that trichomonas infection of the connective and muscle tissues is likely to occur; such infections could cause serious risks to the infected host.