932 resultados para multiscale entropy
Resumo:
Certain statistic and scientometric features of articles published in the journal “International Research in Geographical and Environmental Education” are examined in this paper, for the period 1992-2009, by applying nonparametric statistics and Shannon’s entropy (diversity) formula. The main findings of this analysis are: a) after 2004 the research priorities of researchers in geographical and environmental education seem to have changed, b) “teacher education” has been the most recurrent theme throughout these 18 years, followed by “values & attitudes” and “inquiry & problem solving” c) the themes “GIS” and “Sustainability” were the most “stable” throughout the 18 years, meaning that they maintained their ranks as publication priorities more than other themes, d) citations of IRGEE increase annually, e) the average thematic diversity of articles published during the period 1992-2009 is 82.7% of the maximum thematic diversity (very high), meaning that the Journal has the capacity to attract a wide readership for the 10 themes it has successfully covered throughout the 18 years of its publication.
Resumo:
Real-world AI systems have been recently deployed which can automatically analyze the plan and tactics of tennis players. As the game-state is updated regularly at short intervals (i.e. point-level), a library of successful and unsuccessful plans of a player can be learnt over time. Given the relative strengths and weaknesses of a player’s plans, a set of proven plans or tactics from the library that characterize a player can be identified. For low-scoring, continuous team sports like soccer, such analysis for multi-agent teams does not exist as the game is not segmented into “discretized” plays (i.e. plans), making it difficult to obtain a library that characterizes a team’s behavior. Additionally, as player tracking data is costly and difficult to obtain, we only have partial team tracings in the form of ball actions which makes this problem even more difficult. In this paper, we propose a method to overcome these issues by representing team behavior via play-segments, which are spatio-temporal descriptions of ball movement over fixed windows of time. Using these representations we can characterize team behavior from entropy maps, which give a measure of predictability of team behaviors across the field. We show the efficacy and applicability of our method on the 2010-2011 English Premier League soccer data.
Resumo:
Articular cartilage is a complex structure with an architecture in which fluid-swollen proteoglycans constrained within a 3D network of collagen fibrils. Because of the complexity of the cartilage structure, the relationship between its mechanical behaviours at the macroscale level and its components at the micro-scale level are not completely understood. The research objective in this thesis is to create a new model of articular cartilage that can be used to simulate and obtain insight into the micro-macro-interaction and mechanisms underlying its mechanical responses during physiological function. The new model of articular cartilage has two characteristics, namely: i) not use fibre-reinforced composite material idealization ii) Provide a framework for that it does probing the micro mechanism of the fluid-solid interaction underlying the deformation of articular cartilage using simple rules of repartition instead of constitutive / physical laws and intuitive curve-fitting. Even though there are various microstructural and mechanical behaviours that can be studied, the scope of this thesis is limited to osmotic pressure formation and distribution and their influence on cartilage fluid diffusion and percolation, which in turn governs the deformation of the compression-loaded tissue. The study can be divided into two stages. In the first stage, the distributions and concentrations of proteoglycans, collagen and water were investigated using histological protocols. Based on this, the structure of cartilage was conceptualised as microscopic osmotic units that consist of these constituents that were distributed according to histological results. These units were repeated three-dimensionally to form the structural model of articular cartilage. In the second stage, cellular automata were incorporated into the resulting matrix (lattice) to simulate the osmotic pressure of the fluid and the movement of water within and out of the matrix; following the osmotic pressure gradient in accordance with the chosen rule of repartition of the pressure. The outcome of this study is the new model of articular cartilage that can be used to simulate and study the micromechanical behaviours of cartilage under different conditions of health and loading. These behaviours are illuminated at the microscale level using the socalled neighbourhood rules developed in the thesis in accordance with the typical requirements of cellular automata modelling. Using these rules and relevant Boundary Conditions to simulate pressure distribution and related fluid motion produced significant results that provided the following insight into the relationships between osmotic pressure gradient and associated fluid micromovement, and the deformation of the matrix. For example, it could be concluded that: 1. It is possible to model articular cartilage with the agent-based model of cellular automata and the Margolus neighbourhood rule. 2. The concept of 3D inter connected osmotic units is a viable structural model for the extracellular matrix of articular cartilage. 3. Different rules of osmotic pressure advection lead to different patterns of deformation in the cartilage matrix, enabling an insight into how this micromechanism influences macromechanical deformation. 4. When features such as transition coefficient were changed, permeability (representing change) is altered due to the change in concentrations of collagen, proteoglycans (i.e. degenerative conditions), the deformation process is impacted. 5. The boundary conditions also influence the relationship between osmotic pressure gradient and fluid movement at the micro-scale level. The outcomes are important to cartilage research since we can use these to study the microscale damage in the cartilage matrix. From this, we are able to monitor related diseases and their progression leading to potential insight into drug-cartilage interaction for treatment. This innovative model is an incremental progress on attempts at creating further computational modelling approaches to cartilage research and other fluid-saturated tissues and material systems.
Resumo:
For the timber industry, the ability to simulate the drying of wood is invaluable for manufacturing high quality wood products. Mathematically, however, modelling the drying of a wet porous material, such as wood, is a diffcult task due to its heterogeneous and anisotropic nature, and the complex geometry of the underlying pore structure. The well{ developed macroscopic modelling approach involves writing down classical conservation equations at a length scale where physical quantities (e.g., porosity) can be interpreted as averaged values over a small volume (typically containing hundreds or thousands of pores). This averaging procedure produces balance equations that resemble those of a continuum with the exception that effective coeffcients appear in their deffnitions. Exponential integrators are numerical schemes for initial value problems involving a system of ordinary differential equations. These methods differ from popular Newton{Krylov implicit methods (i.e., those based on the backward differentiation formulae (BDF)) in that they do not require the solution of a system of nonlinear equations at each time step but rather they require computation of matrix{vector products involving the exponential of the Jacobian matrix. Although originally appearing in the 1960s, exponential integrators have recently experienced a resurgence in interest due to a greater undertaking of research in Krylov subspace methods for matrix function approximation. One of the simplest examples of an exponential integrator is the exponential Euler method (EEM), which requires, at each time step, approximation of φ(A)b, where φ(z) = (ez - 1)/z, A E Rnxn and b E Rn. For drying in porous media, the most comprehensive macroscopic formulation is TransPore [Perre and Turner, Chem. Eng. J., 86: 117-131, 2002], which features three coupled, nonlinear partial differential equations. The focus of the first part of this thesis is the use of the exponential Euler method (EEM) for performing the time integration of the macroscopic set of equations featured in TransPore. In particular, a new variable{ stepsize algorithm for EEM is presented within a Krylov subspace framework, which allows control of the error during the integration process. The performance of the new algorithm highlights the great potential of exponential integrators not only for drying applications but across all disciplines of transport phenomena. For example, when applied to well{ known benchmark problems involving single{phase liquid ow in heterogeneous soils, the proposed algorithm requires half the number of function evaluations than that required for an equivalent (sophisticated) Newton{Krylov BDF implementation. Furthermore for all drying configurations tested, the new algorithm always produces, in less computational time, a solution of higher accuracy than the existing backward Euler module featured in TransPore. Some new results relating to Krylov subspace approximation of '(A)b are also developed in this thesis. Most notably, an alternative derivation of the approximation error estimate of Hochbruck, Lubich and Selhofer [SIAM J. Sci. Comput., 19(5): 1552{1574, 1998] is provided, which reveals why it performs well in the error control procedure. Two of the main drawbacks of the macroscopic approach outlined above include the effective coefficients must be supplied to the model, and it fails for some drying configurations, where typical dual{scale mechanisms occur. In the second part of this thesis, a new dual{scale approach for simulating wood drying is proposed that couples the porous medium (macroscale) with the underlying pore structure (microscale). The proposed model is applied to the convective drying of softwood at low temperatures and is valid in the so{called hygroscopic range, where hygroscopically held liquid water is present in the solid phase and water exits only as vapour in the pores. Coupling between scales is achieved by imposing the macroscopic gradient on the microscopic field using suitably defined periodic boundary conditions, which allows the macroscopic ux to be defined as an average of the microscopic ux over the unit cell. This formulation provides a first step for moving from the macroscopic formulation featured in TransPore to a comprehensive dual{scale formulation capable of addressing any drying configuration. Simulation results reported for a sample of spruce highlight the potential and flexibility of the new dual{scale approach. In particular, for a given unit cell configuration it is not necessary to supply the effective coefficients prior to each simulation.
Resumo:
Magnetic zeolite NaA with different Fe3O4 loadings was prepared by hydrothermal synthesis based on metakaolin and Fe3O4. The effect of added Fe3O4 on the removal of ammonium by zeolite NaA was investigated by varying the Fe3O4 loading, pH, adsorption temperature, initial concentration, adsorption time. Langmuir, Freundlich, and pseudo-second-order modeling were used to describe the nature and mechanism of ammonium ion exchange using both zeolite and magnetic zeolite. Thermodynamic parameters such as change in Gibbs free energy, enthalpy and entropy were calculated. The results show that all the selected factors affect the ammonium ion exchange by zeolite and magnetic zeolite, however, the added Fe3O4 apparently does not affect the ion exchange performance of zeolite to the ammonium ion. Freundlich model provides a better description of the adsorption process than Langmuir model. Moreover, kinetic analysis indicates the exchange of ammonium on the two materials follows a pseudosecond-order model. Thermodynamic analysis makes it clear that the adsorption process of ammonium is spontaneous and exothermic. Regardless of kinetic or thermodynamic analysis, all the results suggest that no considerable effect on the adsorption of the ammonium ion by zeolite is found after the addition of Fe3O4. According to the results, magnetic zeolite NaA can be used for the removal of ammonium due to the good adsorption performance and easy separation method from aqueous solution.
Resumo:
This study investigated the influence of interpersonal coordination tendencies on performance outcomes of 1-vs-1 subphases in youth soccer. Eight male developing soccer players (age: 11.8+0.4 years; training experience: 3.6+1.1 years) performed an in situ simulation of a 1-vs-1 sub-phase of soccer. Data from 82 trials were obtained with motion-analysis techniques, and relative phase used to measure the space-time coordination tendencies of attacker-defender dyads. Approximate entropy (ApEn) was then used to quantify the unpredictability of interpersonal interactions over trials. Results revealed how different modes of interpersonal coordination emerging from attacker-defender dyads influenced the 1-vs-1 performance outcomes. High levels of space-time synchronisation (47%) and unpredictability in interpersonal coordination processes (ApEn: 0.91+0.34) were identified as key features of an attacking player’s success. A lead-lag relation attributed to a defending player (34% around 7308 values) and a more predictable coordination mode (ApEn: 0.65+0.27, P50.001), demonstrated the coordination tendencies underlying the success of defending players in 1-vs-1 sub-phases. These findings revealed how the mutual influence of each player on the behaviour of dyadic systems shaped emergent performance outcomes. More specifically, the findings showed that attacking players should be constrained to exploit the space-time synchrony with defenders in an unpredictable and creative way, while defenders should be encouraged to adopt postures and behaviours that actively constrain the attacker’s actions.
Resumo:
Sophisticated models of human social behaviour are fast becoming highly desirable in an increasingly complex and interrelated world. Here, we propose that rather than taking established theories from the physical sciences and naively mapping them into the social world, the advanced concepts and theories of social psychology should be taken as a starting point, and used to develop a new modelling methodology. In order to illustrate how such an approach might be carried out, we attempt to model the low elaboration attitude changes of a society of agents in an evolving social context. We propose a geometric model of an agent in context, where individual agent attitudes are seen to self-organise to form ideologies, which then serve to guide further agent-based attitude changes. A computational implementation of the model is shown to exhibit a number of interesting phenomena, including a tendency for a measure of the entropy in the system to decrease, and a potential for externally guiding a population of agents towards a new desired ideology.
Resumo:
X-ray microtomography (micro-CT) with micron resolution enables new ways of characterizing microstructures and opens pathways for forward calculations of multiscale rock properties. A quantitative characterization of the microstructure is the first step in this challenge. We developed a new approach to extract scale-dependent characteristics of porosity, percolation, and anisotropic permeability from 3-D microstructural models of rocks. The Hoshen-Kopelman algorithm of percolation theory is employed for a standard percolation analysis. The anisotropy of permeability is calculated by means of the star volume distribution approach. The local porosity distribution and local percolation probability are obtained by using the local porosity theory. Additionally, the local anisotropy distribution is defined and analyzed through two empirical probability density functions, the isotropy index and the elongation index. For such a high-resolution data set, the typical data sizes of the CT images are on the order of gigabytes to tens of gigabytes; thus an extremely large number of calculations are required. To resolve this large memory problem parallelization in OpenMP was used to optimally harness the shared memory infrastructure on cache coherent Non-Uniform Memory Access architecture machines such as the iVEC SGI Altix 3700Bx2 Supercomputer. We see adequate visualization of the results as an important element in this first pioneering study.
Resumo:
Topic modeling has been widely utilized in the fields of information retrieval, text mining, text classification etc. Most existing statistical topic modeling methods such as LDA and pLSA generate a term based representation to represent a topic by selecting single words from multinomial word distribution over this topic. There are two main shortcomings: firstly, popular or common words occur very often across different topics that bring ambiguity to understand topics; secondly, single words lack coherent semantic meaning to accurately represent topics. In order to overcome these problems, in this paper, we propose a two-stage model that combines text mining and pattern mining with statistical modeling to generate more discriminative and semantic rich topic representations. Experiments show that the optimized topic representations generated by the proposed methods outperform the typical statistical topic modeling method LDA in terms of accuracy and certainty.
Resumo:
Introduction: The human patellar tendon is highly adaptive to changes in habitual loading but little is known about its acute mechanical response to exercise. This research evaluated the immediate transverse strain response of the patellar tendon to a bout of resistive quadriceps exercise. Methods: Twelve healthy adult males (mean age 34.0+/-12.1 years, height 1.75+/-0.09 m and weight 76.7+/-12.3 kg) free of knee pain participated in the research. A 10-5 MHz linear-array transducer was used to acquire standardised sagittal sonograms of the right patellar tendon immediately prior to and following 90 repetitions of a double-leg parallel-squat exercise performed against a resistance of 175% bodyweight. Tendon thickness was determined 20-mm distal to the pole of the patellar and transverse Hencky strain was calculated as the natural log of the ratio of post- to pre-exercise tendon thickness and expressed as a percentage. Measures of tendon echotexture (echogenicity and entropy) were also calculated from subsequent gray-scale profiles. Results: Quadriceps exercise resulted in an immediate decrease in patellar tendon thickness (P<.05), equating to a transverse strain of -22.5+/-3.4%, and was accompanied by increased tendon echogenicity (P<.05) and decreased entropy (P<.05). The transverse strain response of the patellar tendon was significantly correlated with both tendon echogenicity (r = -0.58, P<.05) and entropy following exercise (r=0.73, P<.05), while older age was associated with greater entropy of the patellar tendon prior to exercise (r=0.79, P<.05) and a reduced transverse strain response (r=0.61, P<.05) following exercise. Conclusions: This study is the first to show that quadriceps exercise invokes structural alignment and fluid movement within the matrix that are manifest by changes in echotexture and transverse strain in the patellar tendon., (C)2012The American College of Sports Medicine
Resumo:
The problem of estimating pseudobearing rate information of an airborne target based on measurements from a vision sensor is considered. Novel image speed and heading angle estimators are presented that exploit image morphology, hidden Markov model (HMM) filtering, and relative entropy rate (RER) concepts to allow pseudobearing rate information to be determined before (or whilst) the target track is being estimated from vision information.
Resumo:
This thesis establishes performance properties for approximate filters and controllers that are designed on the basis of approximate dynamic system representations. These performance properties provide a theoretical justification for the widespread application of approximate filters and controllers in the common situation where system models are not known with complete certainty. This research also provides useful tools for approximate filter designs, which are applied to hybrid filtering of uncertain nonlinear systems. As a contribution towards applications, this thesis also investigates air traffic separation control in the presence of measurement uncertainties.
Resumo:
Utility functions in Bayesian experimental design are usually based on the posterior distribution. When the posterior is found by simulation, it must be sampled from for each future data set drawn from the prior predictive distribution. Many thousands of posterior distributions are often required. A popular technique in the Bayesian experimental design literature to rapidly obtain samples from the posterior is importance sampling, using the prior as the importance distribution. However, importance sampling will tend to break down if there is a reasonable number of experimental observations and/or the model parameter is high dimensional. In this paper we explore the use of Laplace approximations in the design setting to overcome this drawback. Furthermore, we consider using the Laplace approximation to form the importance distribution to obtain a more efficient importance distribution than the prior. The methodology is motivated by a pharmacokinetic study which investigates the effect of extracorporeal membrane oxygenation on the pharmacokinetics of antibiotics in sheep. The design problem is to find 10 near optimal plasma sampling times which produce precise estimates of pharmacokinetic model parameters/measures of interest. We consider several different utility functions of interest in these studies, which involve the posterior distribution of parameter functions.
Resumo:
Organizational transformations reliant on successful ICT system developments (continue to) fail to deliver projected benefits even when contemporary governance models are applied rigorously. Modifications to traditional program, project and systems development management methods have produced little material improvement to successful transformation as they are unable to routinely address the complexity and uncertainty of dynamic alignment of IS investments and innovation. Complexity theory provides insight into why this phenomenon occurs and is used to develop a conceptualization of complexity in IS-driven organizational transformations. This research-in-progress aims to identify complexity formulations relevant to organizational transformation. Political/power based influences, interrelated business rules, socio-technical innovation, impacts on stakeholders and emergent behaviors are commonly considered as characterizing complexity while the proposed conceptualization accommodates these as connectivity, irreducibility, entropy and/or information gain in hierarchically approximation and scaling, number of states in a finite automata and/or dimension of attractor, and information and/or variety.
Resumo:
The diagnostics of mechanical components operating in transient conditions is still an open issue, in both research and industrial field. Indeed, the signal processing techniques developed to analyse stationary data are not applicable or are affected by a loss of effectiveness when applied to signal acquired in transient conditions. In this paper, a suitable and original signal processing tool (named EEMED), which can be used for mechanical component diagnostics in whatever operating condition and noise level, is developed exploiting some data-adaptive techniques such as Empirical Mode Decomposition (EMD), Minimum Entropy Deconvolution (MED) and the analytical approach of the Hilbert transform. The proposed tool is able to supply diagnostic information on the basis of experimental vibrations measured in transient conditions. The tool has been originally developed in order to detect localized faults on bearings installed in high speed train traction equipments and it is more effective to detect a fault in non-stationary conditions than signal processing tools based on spectral kurtosis or envelope analysis, which represent until now the landmark for bearings diagnostics.