879 resultados para moving domains
Resumo:
Traditionally, audio-motor timing processes have been understood as motor output from an internal clock, the speed of which is set by heard sound pulses. In contrast, this paper proposes a more ecologically-grounded approach, arguing that audio-motor processes are better characterized as performed actions on the perceived structure of auditory events. This position is explored in the context of auditory sensorimotor synchronization and continuation timing. Empirical research shows that the structure of sounds as auditory events can lead to marked differences in movement timing performance. The nature of these effects is discussed in the context of perceived action-relevance of auditory event structure. It is proposed that different forms of sound invite or support different patterns of sensorimotor timing. Hence, the temporal information in looped auditory signals is more than just the interval durations between onsets: all metronomes are not created equal. The potential implications for auditory guides in motor performance enhancement are also described.
Resumo:
A gap in the medical undergraduate curriculum on safe moving and handling of patients was identified, and a project to enhance moving and handling education for undergraduates in various healthcare disciplines was undertaken. A team of nurses, doctors, physiotherapists and e-learning professionals developed a cross-discipline e-learning resource, piloted with medical and nursing students at Queen’s University Belfast. One outcome of the project was the development of a deeper recognition of the common curriculum across healthcare disciplines.
Resumo:
Archaea and Bacteria constitute a majority of life systems on Earth but have long been considered inferior to Eukarya in terms of solute tolerance. Whereas the most halophilic prokaryotes are known for an ability to multiply at saturated NaCl (water activity (aw) 0.755) some xerophilic fungi can germinate, usually at high-sugar concentrations, at values as low as 0.650–0.605 aw. Here, we present evidence that halophilic prokayotes can grow down to water activities of <0.755 for Halanaerobium lacusrosei (0.748), Halobacterium strain 004.1 (0.728), Halobacterium sp. NRC-1 and Halococcus morrhuae (0.717), Haloquadratum walsbyi (0.709), Halococcus salifodinae (0.693), Halobacterium noricense (0.687), Natrinema pallidum (0.681) and haloarchaeal strains GN-2 and GN-5 (0.635 aw). Furthermore, extrapolation of growth curves (prone to giving conservative estimates) indicated theoretical minima down to 0.611 aw for extreme, obligately halophilic Archaea and Bacteria. These were compared with minima for the most solute-tolerant Bacteria in high-sugar (or other non-saline) media (Mycobacterium spp., Tetragenococcus halophilus, Saccharibacter floricola, Staphylococcus aureus and so on) and eukaryotic microbes in saline (Wallemia spp., Basipetospora halophila, Dunaliella spp. and so on) and high-sugar substrates (for example, Xeromyces bisporus, Zygosaccharomyces rouxii, Aspergillus and Eurotium spp.). We also manipulated the balance of chaotropic and kosmotropic stressors for the extreme, xerophilic fungi Aspergillus penicilloides and X. bisporus and, via this approach, their established water-activity limits for mycelial growth (~0.65) were reduced to 0.640. Furthermore, extrapolations indicated theoretical limits of 0.632 and 0.636 aw for A. penicilloides and X. bisporus, respectively. Collectively, these findings suggest that there is a common water-activity limit that is determined by physicochemical constraints for the three domains of life.
Resumo:
This paper presents experimental and numerical studies into the hydrodynamic loading of a bottom-hinged large buoyant flap held rigidly upright in waves. Possible applications and limitations of physical experiments, a linear potential analytical method, a linear potential numerical method, a weakly non-linear tool and RANS CFD simulations are discussed. Different domains of applicability of these research techniques are highlighted considering the validity of underlying assumptions, complexity of application and feasibility in terms of resources like time and computing power needed to obtain results. Conclusions are drawn regarding the future extension of the numerical methods to the case of a moving flap.
Resumo:
In the immediate aftermath of the Second World War, only those who had opposed the Germans or were perceived to have done so could freely express themselves. Soon, however, three young writers clearly leaning to the right of the political spectrum – Antoine Blondin, Roger Nimier and Jacques Laurent – dared to challenge their narratives in a series of provocative novels published between 1949 and 1954. Quickly referred to as the Hussards after the publication in 1952 of a famous essay by Bernard Frank, these writers momentarily occupied the literary space left vacant by their older peers. Without denying the provocative, political and subversive dimensions of the Hussards’ war novels, this article will argue that their success was mainly due to the fact that they were largely in line – and not in contradiction – with the ‘horizon of expectations’ of their time (Jauss, 1982).
Resumo:
Simulation of disorders of respiratory mechanics shown by spirometry provides insight into the pathophysiology of disease but some clinically important disorders have not been simulated and none have been formally evaluated for education. We have designed simple mechanical devices which, along with existing simulators, enable all the main dysfunctions which have diagnostic value in spirometry to be simulated and clearly explained with visual and haptic feedback. We modelled the airways as Starling resistors by a clearly visible mechanical action to simulate intra- and extra-thoracic obstruction. A narrow tube was used to simulate fixed large airway obstruction and inelastic bands to simulate restriction. We hypothesized that using simulators whose action explains disease promotes learning especially in higher domain educational objectives. The main features of obstruction and restriction were correctly simulated. Simulation of variable extra-thoracic obstruction caused blunting and plateauing of inspiratory flow, and simulation of intra-thoracic obstruction caused limitation of expiratory flow with marked dynamic compression. Multiple choice tests were created with questions allocated to lower (remember and understand) or higher cognitive domains (apply, analyse and evaluate). In a cross-over design, overall mean scores increased after 1½ h simulation spirometry (43-68 %, effect size 1.06, P < 0.0001). In higher cognitive domains the mean score was lower before and increased further than lower domains (Δ 30 vs 20 %, higher vs lower effect size 0.22, P < 0.05). In conclusion, the devices successfully simulate various patterns of obstruction and restriction. Using these devices medical students achieved marked enhancement of learning especially in higher cognitive domains.
Resumo:
This paper sets out a framework to structure reflexivity in social work practice. Based on the thinking of the sociologist, Derek Layder, it comprises five domains that impact on the individual and social life, namely: (i) psycho-biography – referring to a person’s unique experience throughout the life-course; (ii) situated activity – highlighting the impact of every day social interaction; (iii) social settings – addressing the role of organizations in social life; (iv) culture – covering the influence of attitudes, beliefs, tastes and ideas on symbolic meaning; and (v) politico-economy – alluding to the ramifications of political and economic forces on people’s lives. It is contended that power circulates throughout each domain as an enabling and constraining force. The paper then outlines a process for using the reflexive framework in ‘enabling’ activities such as practice learning, supervision, mentoring and coaching. By applying the framework in these contexts, it is argued that social workers can reflect critically on their role and develop emancipatory forms of practice.
Resumo:
Context. The jets of compact accreting objects are composed of electrons and a mixture of positrons and ions. These outflows impinge on the interstellar or intergalactic medium and both plasmas interact via collisionless processes. Filamentation (beam-Weibel) instabilities give rise to the growth of strong electromagnetic fields. These fields thermalize the interpenetrating plasmas.
Aims. Hitherto, the effects imposed by a spatial non-uniformity on filamentation instabilities have remained unexplored. We examine the interaction between spatially uniform background electrons and a minuscule cloud of electrons and positrons. The cloud size is comparable to that created in recent laboratory experiments and such clouds may exist close to internal and external shocks of leptonic jets. The purpose of our study is to determine the prevalent instabilities, their ability to generate electromagnetic fields and the mechanism, by which the lepton micro-cloud transfers energy to the background plasma.
Methods. A square micro-cloud of equally dense electrons and positrons impinges in our particle-in-cell (PIC) simulation on a spatially uniform plasma at rest. The latter consists of electrons with a temperature of 1 keV and immobile ions. The initially charge- and current neutral micro-cloud has a temperature of 100 keV and a side length of 2.5 plasma skin depths of the micro-cloud. The side length is given in the reference frame of the background plasma. The mean speed of the micro-cloud corresponds to a relativistic factor of 15, which is relevant for laboratory experiments and for relativistic astrophysical outflows. The spatial distributions of the leptons and of the electromagnetic fields are examined at several times.
Results. A filamentation instability develops between the magnetic field carried by the micro-cloud and the background electrons. The electromagnetic fields, which grow from noise levels, redistribute the electrons and positrons within the cloud, which boosts the peak magnetic field amplitude. The current density and the moduli of the electromagnetic fields grow aperiodically in time and steadily along the direction that is anti-parallel to the cloud's velocity vector. The micro-cloud remains conjoined during the simulation. The instability induces an electrostatic wakefield in the background plasma.
Conclusions. Relativistic clouds of leptons can generate and amplify magnetic fields even if they have a microscopic size, which implies that the underlying processes can be studied in the laboratory. The interaction of the localized magnetic field and high-energy leptons will give rise to synchrotron jitter radiation. The wakefield in the background plasma dissipates the kinetic energy of the lepton cloud. Even the fastest lepton micro-clouds can be slowed down by this collisionless mechanism. Moderately fast charge- and current neutralized lepton micro-clouds will deposit their energy close to relativistic shocks and hence they do not constitute an energy loss mechanism for the shock.
Resumo:
With interest in microneedles as a novel drug transdermal delivery system increasing rapidly since the late 1990s (Margetts and Sawyer Contin Educ Anaesthesia Crit Care Pain. 7(5):171-76, 2007), a diverse range of microneedle systems have been fabricated with varying designs and dimensions. However, there are still very few commercially available microneedle products. One major issue regarding microneedle manufacture on an industrial scale is the lack of specific quality standards for this novel dosage form in the context of Good Manufacturing Practice (GMP). A range of mechanical characterisation tests and microneedle insertion analysis techniques are used by researchers working on microneedle systems to assess the safety and performance profiles of their various designs. The lack of standardised tests and equipment used to demonstrate microneedle mechanical properties and insertion capability makes it difficult to directly compare the in use performance of candidate systems. This review highlights the mechanical tests and insertion analytical techniques used by various groups to characterise microneedles. This in turn exposes the urgent need for consistency across the range of microneedle systems in order to promote innovation and the successful commercialisation of microneedle products.
Resumo:
This article explores the contours of continued housing instability among a group of young people who are participants in a qualitative longitudinal study of youth homelessness in Dublin, Ireland, and considers the limitations of the ‘acculturation’ thesis in explaining long-term homelessness amongst the young. Baseline interviews were conducted with 40 young people, aged 14–23 years, in 2004, and follow-up interviews were conducted with 30 research participants successfully ‘tracked’ in 2005–06. By the time of follow-up, 17 of those interviewed had exited homelessness and 13 remained homeless. The article focuses on the latter group with the aim of exploring the processes and experiences associated with their continued homelessness. The findings presented demonstrate the adverse impact of their ongoing movement through emergency services targeting the under-18s, including their greater immersion in drug and criminal lifestyles. A majority had experienced one or more period of incarceration by the time of follow-up, and many were users of adult homeless services. Whilst some dimensions of young people's accounts are suggestive of a process of acculturation to street and hostel life, we argue that their continued homelessness is better explained as a consequence of their ongoing and unresolved transience and, in particular, their continued dependence on emergency hostel accommodation. The implications of the findings for policy and service provision for homeless young people are discussed.
Resumo:
Background
Low patient adherence to treatment is associated with poorer health outcomes in bronchiectasis. We sought to use the Theoretical Domains Framework (TDF) (a framework derived from 33 psychological theories) and behavioural change techniques (BCTs) to define the content of an intervention to change patients’ adherence in bronchiectasis (Stage 1 and 2) and stakeholder expert panels to define its delivery (Stage 3).
Methods
We conducted semi-structured interviews with patients with bronchiectasis about barriers and motivators to adherence to treatment and focus groups or interviews with bronchiectasis healthcare professionals (HCPs) about their ability to change patients’ adherence to treatment. We coded these data to the 12 domain TDF to identify relevant domains for patients and HCPs (Stage 1). Three researchers independently mapped relevant domains for patients and HCPs to a list of 35 BCTs to identify two lists (patient and HCP) of potential BCTs for inclusion (Stage 2). We presented these lists to three expert panels (two with patients and one with HCPs/academics from across the UK). We asked panels who the intervention should target, who should deliver it, at what intensity, in what format and setting, and using which outcome measures (Stage 3).
Results
Eight TDF domains were perceived to influence patients’ and HCPs’ behaviours: Knowledge, Skills, Beliefs about capability, Beliefs about consequences, Motivation, Social influences, Behavioural regulation and Nature of behaviours (Stage 1). Twelve BCTs common to patients and HCPs were included in the intervention: Monitoring, Self-monitoring, Feedback, Action planning, Problem solving, Persuasive communication, Goal/target specified:behaviour/outcome, Information regarding behaviour/outcome, Role play, Social support and Cognitive restructuring (Stage 2). Participants thought that an individualised combination of these BCTs should be delivered to all patients, by a member of staff, over several one-to-one and/or group visits in secondary care. Efficacy should be measured using pulmonary exacerbations, hospital admissions and quality of life (Stage 3).
Conclusions
Twelve BCTs form the intervention content. An individualised selection from these 12 BCTs will be delivered to all patients over several face-to-face visits in secondary care. Future research should focus on developing physical materials to aid delivery of the intervention prior to feasibility and pilot testing. If effective, this intervention may improve adherence and health outcomes for those with bronchiectasis in the future.
Resumo:
Despite the numerous advantages of continuous processing, high-value chemical production is still dominated by batch techniques. In this paper, we investigate options for the continuous dehydrogenation of 1,2,3,4- tetrahydrocarbazole using a trickle bed reactor operating under realistic liquid velocities with and without the addition of a hydrogen acceptor. Here, a commercial 5 wt % Pd/Al2O3 catalyst was observed to slowly deactivate, hence proving unsuitable for continuous use. This deactivation was attributed to the strong adsorption of a byproduct on the surface of the support. Application of a base washing technique resolved this issue and a stable continuous reaction has been demonstrated. As was previously shown for the batch reaction, the addition of a hydrogen acceptor gas (propene) can increase the overall catalytic activity of the system.