913 resultados para morphological component analysis (MCA)
Resumo:
BACKGROUND: The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies. RESULTS: We made use of publicly available expression signatures and cell based functional assays to delineate differences between various intestinal colon carcinoma cell lines and normal intestinal epithelium. We have compared a panel of intestinal cell lines with patient-derived normal and tumor epithelium and classified them according to traits relating to oncogenic pathway activity, epithelial-mesenchymal transition (EMT) and stemness, migratory properties, proliferative activity, transporter expression profiles and chemosensitivity. For example, SW480 represent an EMT-high, migratory phenotype and scored highest in terms of signatures associated to worse overall survival and higher risk of recurrence based on patient derived databases. On the other hand, differentiated HT29 and T84 cells showed gene expression patterns closest to tumor bulk derived cells. Regarding drug absorption, we confirmed that differentiated Caco-2 cells are the model of choice for active uptake studies in the small intestine. Regarding chemosensitivity we were unable to confirm a recently proposed association of chemo-resistance with EMT traits. However, a novel signature was identified through mining of NCI60 GI50 values that allowed to rank the panel of intestinal cell lines according to their drug responsiveness to commonly used chemotherapeutics. CONCLUSIONS: This study presents a straightforward strategy to exploit publicly available gene expression data to guide the choice of cell-based models. While this approach does not overcome the major limitations of such models, introducing a rank order of selected features may allow selecting model cell lines that are more adapted and pertinent to the addressed biological question.
Resumo:
It is well-known that Amazon tropical forest soils contain high microbial biodiversity. However, anthropogenic actions of slash and burn, mainly for pasture establishment, induce profound changes in the well-balanced biogeochemical cycles. After a few years the grass yield usually declines, the pasture is abandoned and is transformed into a secondary vegetation called "capoeira" or fallow. The aim of this study was to examine how the clearing of Amazon rainforest for pasture affects: (1) the diversity of the Bacteria domain evaluated by Polymerase Chain Reaction and Denaturing Gradient Gel Electrophoresis (PCR-DGGE), (2) microbial biomass and some soil chemical properties (pH, moisture, P, K, Ca, Mg, Al, H + Al, and BS), and (3) the influence of environmental variables on the genetic structure of bacterial community. In the pasture soil, total carbon (C) was between 30 to 42 % higher than in the fallow, and almost 47 % higher than in the forest soil over a year. The same pattern was observed for N. Microbial biomass in the pasture was about 38 and 26 % higher than at fallow and forest sites, respectively, in the rainy season. DGGE profiling revealed a lower number of bands per area in the dry season, but differences in the structure of bacterial communities among sites were better defined than in the wet season. The bacterial DNA fingerprints in the forest were stronger related to Al content and the Cmic:Ctot and Nmic:Ntot ratios. For pasture and fallow sites, the structure of the Bacteria domain was more associated with pH, sum of bases, moisture, total C and N and the microbial biomass. In general microbial biomass in the soils was influenced by total C and N, which were associated with the Bacteria domain, since the bacterial community is a component and active fraction of the microbial biomass. Results show that the genetic composition of bacterial communities in Amazonian soils changed along the sequence forest-pasture-fallow.
Resumo:
The majority (60 %) of the soils in the Venezuelan Andes are Inceptisols, a large percentage of which are classified as Dystrustepts by the US Soil Taxonomy, Second Edition of 1999. Some of these soils were classified as Humitropepts (high organic - C-OC-soils) and Dystropepts by the Soil Taxonomy prior to 1999, but no equivalent large group was created for high-OC soils in the new Ustepts suborder. Dystrusepts developed on different materials, relief and vegetation. Their properties are closely related with the parent material. Soils developed on transported deposits or sediments have darker and thicker A horizons, a slightly acid reaction, greater CEC and OC contents than upland slope soils. Based on the previous classification into large groups (Humitropepts and Dystropepts) we found that: Humitropepts have a slightly less acid and higher values of CEC than Dystropepts. These properties or characteristics seem to be related to the fact that Humitropepts have a higher clay and OC content than the Dystropepts. Canonical discrimination analysis showed that the variables that discriminate the two great soil groups from each other are OC and silt. Data for Humitropepts are grouped around the OC vector (defining axis 3, principal component analysis), while Dystropepts are associated with the clay and sand vectors, with significant correlation. Given the importance of OC for soil properties, we propose the creation of a new large group named Humustepts for the order Inceptisol, suborder Ustepts.
Resumo:
Soil science has sought to develop better techniques for the classification of soils, one of which is the use of remote sensing applications. The use of ground sensors to obtain soil spectral data has enabled the characterization of these data and the advancement of techniques for the quantification of soil attributes. In order to do this, the creation of a soil spectral library is necessary. A spectral library should be representative of the variability of the soils in a region. The objective of this study was to create a spectral library of distinct soils from several agricultural regions of Brazil. Spectral data were collected (using a Fieldspec sensor, 350-2,500 nm) for the horizons of 223 soil profiles from the regions of Matão, Paraguaçu Paulista, Andradina, Ipaussu, Mirandópolis, Piracicaba, São Carlos, Araraquara, Guararapes, Valparaíso (SP); Naviraí, Maracajú, Rio Brilhante, Três Lagoas (MS); Goianésia (GO); and Uberaba and Lagoa da Prata (MG). A Principal Component Analysis (PCA) of the data was then performed and a graphic representation of the spectral curve was created for each profile. The reflectance intensity of the curves was principally influenced by the levels of Fe2O3, clay, organic matter and the presence of opaque minerals. There was no change in the spectral curves in the horizons of the Latossolos, Nitossolos, and Neossolos Quartzarênicos. Argissolos had superficial horizon curves with the greatest intensity of reflection above 2,200 nm. Cambissolos and Neossolos Litólicos had curves with greater reflectance intensity in poorly developed horizons. Gleisols showed a convex curve in the region of 350-400 nm. The PCA was able to separate different data collection areas according to the region of source material. Principal component one (PC1) was correlated with the intensity of reflectance samples and PC2 with the slope between the visible and infrared samples. The use of the Spectral Library as an indicator of possible soil classes proved to be an important tool in profile classification.
Resumo:
The three most frequent forms of mild cognitive impairment (MCI) are single-domain amnestic MCI (sd-aMCI), single-domain dysexecutive MCI (sd-dMCI) and multiple-domain amnestic MCI (md-aMCI). Brain imaging differences among single domain subgroups of MCI were recently reported supporting the idea that electroencephalography (EEG) functional hallmarks can be used to differentiate these subgroups. We performed event-related potential (ERP) measures and independent component analysis in 18 sd-aMCI, 13 sd-dMCI and 35 md-aMCI cases during the successful performance of the Attentional Network Test. Sensitivity and specificity analyses of ERP for the discrimination of MCI subgroups were also made. In center-cue and spatial-cue warning stimuli, contingent negative variation (CNV) was elicited in all MCI subgroups. Two independent components (ICA1 and 2) were superimposed in the time range on the CNV. The ICA2 was strongly reduced in sd-dMCI compared to sd-aMCI and md-aMCI (4.3 vs. 7.5% and 10.9% of the CNV component). The parietal P300 ERP latency increased significantly in sd-dMCI compared to md-aMCI and sd-aMCI for both congruent and incongruent conditions. This latency for incongruent targets allowed for a highly accurate separation of sd-dMCI from both sd-aMCI and md-aMCI with correct classification rates of 90 and 81%, respectively. This EEG parameter alone performed much better than neuropsychological testing in distinguishing sd-dMCI from md-aMCI. Our data reveal qualitative changes in the composition of the neural generators of CNV in sd-dMCI. In addition, they document an increased latency of the executive P300 component that may represent a highly accurate hallmark for the discrimination of this MCI subgroup in routine clinical settings.
Resumo:
Kinematic functional evaluation with body-worn sensors provides discriminative and responsive scores after shoulder surgery, but the optimal movements' combination has not yet been scientifically investigated. The aim of this study was the development of a simplified shoulder function kinematic score including only essential movements. The P Score, a seven-movement kinematic score developed on 31 healthy participants and 35 patients before surgery and at 3, 6 and 12 months after shoulder surgery, served as a reference.Principal component analysis and multiple regression were used to create simplified scoring models. The candidate models were compared to the reference score. ROC curve for shoulder pathology detection and correlations with clinical questionnaires were calculated.The B-B Score (hand to the Back and hand upwards as to change a Bulb) showed no difference to the P Score in time*score interaction (P > .05) and its relation with the reference score was highly linear (R(2) > .97). Absolute value of correlations with clinical questionnaires ranged from 0.51 to 0.77. Sensitivity was 97% and specificity 94%.The B-B and reference scores are equivalent for the measurement of group responses. The validated simplified scoring model presents practical advantages that facilitate the objective evaluation of shoulder function in clinical practice.
Resumo:
The agricultural potential is generally assessed and managed based on a one-dimensional vision of the soil profile, however, the increased appreciation of sustainable production has stimulated studies on faster and more accurate evaluation techniques and methods of the agricultural potential on detailed scales. The objective of this study was to investigate the possibility of using soil magnetic susceptibility for the identification of landscape segments on a detailed scale in the region of Jaboticabal, São Paulo State. The studied area has two slope curvatures: linear and concave, subdivided into three landscape segments: upper slope (US, concave), middle slope (MS, linear) and lower slope (LS, linear). In each of these segments, 20 points were randomly sampled from a database with 207 samples forming a regular grid installed in each landscape segment. The soil physical and chemical properties, CO2 emissions (FCO2) and magnetic susceptibility (MS) of the samples were evaluated represented by: magnetic susceptibility of air-dried fine earth (MS ADFE), magnetic susceptibility of the total sand fraction (MS TS) and magnetic susceptibility of the clay fraction (MS Cl) in the 0.00 - 0.15 m layer. The principal component analysis showed that MS is an important property that can be used to identify landscape segments, because the correlation of this property within the first principal component was high. The hierarchical cluster analysis method identified two groups based on the variables selected by principal component analysis; of the six selected variables, three were related to magnetic susceptibility. The landscape segments were differentiated similarly by the principal component analysis and by the cluster analysis using only the properties with higher discriminatory power. The cluster analysis of MS ADFE, MS TS and MS Cl allowed the formation of three groups that agree with the segment division established in the field. The grouping by cluster analysis indicated MS as a tool that could facilitate the identification of landscape segments and enable the mapping of more homogeneous areas at similar locations.
Resumo:
Since different pedologists will draw different soil maps of a same area, it is important to compare the differences between mapping by specialists and mapping techniques, as for example currently intensively discussed Digital Soil Mapping. Four detailed soil maps (scale 1:10.000) of a 182-ha sugarcane farm in the county of Rafard, São Paulo State, Brazil, were compared. The area has a large variation of soil formation factors. The maps were drawn independently by four soil scientists and compared with a fifth map obtained by a digital soil mapping technique. All pedologists were given the same set of information. As many field expeditions and soil pits as required by each surveyor were provided to define the mapping units (MUs). For the Digital Soil Map (DSM), spectral data were extracted from Landsat 5 Thematic Mapper (TM) imagery as well as six terrain attributes from the topographic map of the area. These data were summarized by principal component analysis to generate the map designs of groups through Fuzzy K-means clustering. Field observations were made to identify the soils in the MUs and classify them according to the Brazilian Soil Classification System (BSCS). To compare the conventional and digital (DSM) soil maps, they were crossed pairwise to generate confusion matrices that were mapped. The categorical analysis at each classification level of the BSCS showed that the agreement between the maps decreased towards the lower levels of classification and the great influence of the surveyor on both the mapping and definition of MUs in the soil map. The average correspondence between the conventional and DSM maps was similar. Therefore, the method used to obtain the DSM yielded similar results to those obtained by the conventional technique, while providing additional information about the landscape of each soil, useful for applications in future surveys of similar areas.
Resumo:
Considering that information from soil reflectance spectra is underutilized in soil classification, this paper aimed to evaluate the relationship of soil physical, chemical properties and their spectra, to identify spectral patterns for soil classes, evaluate the use of numerical classification of profiles combined with spectral data for soil classification. We studied 20 soil profiles from the municipality of Piracicaba, State of São Paulo, Brazil, which were morphologically described and classified up to the 3rd category level of the Brazilian Soil Classification System (SiBCS). Subsequently, soil samples were collected from pedogenetic horizons and subjected to soil particle size and chemical analyses. Their Vis-NIR spectra were measured, followed by principal component analysis. Pearson's linear correlation coefficients were determined among the four principal components and the following soil properties: pH, organic matter, P, K, Ca, Mg, Al, CEC, base saturation, and Al saturation. We also carried out interpretation of the first three principal components and their relationships with soil classes defined by SiBCS. In addition, numerical classification of the profiles based on the OSACA algorithm was performed using spectral data as a basis. We determined the Normalized Mutual Information (NMI) and Uncertainty Coefficient (U). These coefficients represent the similarity between the numerical classification and the soil classes from SiBCS. Pearson's correlation coefficients were significant for the principal components when compared to sand, clay, Al content and soil color. Visual analysis of the principal component scores showed differences in the spectral behavior of the soil classes, mainly among Argissolos and the others soils. The NMI and U similarity coefficients showed values of 0.74 and 0.64, respectively, suggesting good similarity between the numerical and SiBCS classes. For example, numerical classification correctly distinguished Argissolos from Latossolos and Nitossolos. However, this mathematical technique was not able to distinguish Latossolos from Nitossolos Vermelho férricos, but the Cambissolos were well differentiated from other soil classes. The numerical technique proved to be effective and applicable to the soil classification process.
Resumo:
ABSTRACT Soil contamination by heavy metals threatens ecosystems and human health. Environmental monitoring bodies need reference values for these contaminants to assess the impacts of anthropogenic activities on soil contamination. Quality reference values (QRVs) reflect the natural concentrations of heavy metals in soils without anthropic interference and must be regionally established. The aim of this study was to determine the natural concentrations and quality reference values for the metals Ag, Ba, Cd, Co, Cu, Cr, Mo, Ni, Pb, Sb and Zn in soils of Paraíba state, Brazil. Soil samples were collected from 94 locations across the state in areas of native vegetation or with minimal anthropic interference. The quality reference values (QRVs) were (mg kg-1): Ag (<0.53), Ba (117.41), Cd (0.08), Co (13.14), Cu (20.82), Cr (48.35), Mo (0.43), Ni (14.44), Sb (0.61), Pb (14.62) and Zn (33.65). Principal component analysis grouped the metals Cd, Cr, Cu, Ni, Pb and Sb (PC1); Ag (PC2); and Ba, Co, Fe, Mn and Zn (PC3). These values were made official by Paraíba state through Normativa Resolution 3602/2014.
Resumo:
Mismatch negativity (MMN) overlaps with other auditory event-related potential (ERP) components. We examined the ERPs of 50 9- to 11-year-old children for vowels /i/, /y/ and equivalent complex tones. The goal was to separate MMN from obligatory ERP components using principal component analysis and equal probability control condition. In addition to the contrast of the deviant minus standard response, we employed the contrast of the deviant minus control response, to see whether the obligatory processing contributes to MMN in children. When looking for differences in speech deviant minus standard contrast, MMN starts around 112 ms. However, when both contrasts are examined, MMN emerges for speech at 160 ms whereas for nonspeech MMN is observed at 112 ms regardless of contrast. We argue that this discriminative response to speech stimuli at 112 ms is obligatory in nature rather than reflecting change detection processing.
Resumo:
To study the stress-induced effects caused by wounding under a new perspective, a metabolomic strategy based on HPLC-MS has been devised for the model plant Arabidopsis thaliana. To detect induced metabolites and precisely localise these compounds among the numerous constitutive metabolites, HPLC-MS analyses were performed in a two-step strategy. In a first step, rapid direct TOF-MS measurements of the crude leaf extract were performed with a ballistic gradient on a short LC-column. The HPLC-MS data were investigated by multivariate analysis as total mass spectra (TMS). Principal components analysis (PCA) and hierarchical cluster analysis (HCA) on principal coordinates were combined for data treatment. PCA and HCA demonstrated a clear clustering of plant specimens selecting the highest discriminating ions given by the complete data analysis, leading to the specific detection of discrete-induced ions (m/z values). Furthermore, pool constitution with plants of homogeneous behaviour was achieved for confirmatory analysis. In this second step, long high-resolution LC profilings on an UPLC-TOF-MS system were used on pooled samples. This allowed to precisely localise the putative biological marker induced by wounding and by specific extraction of accurate m/z values detected in the screening procedure with the TMS spectra.
Resumo:
The correlation between the species composition of pasture communities and soil properties in Plana de Vic has been studied using two multivariate methods, Correspondence Analysis (CA) for the vegetation data and Principal Component Analysis (PCA) for the soil data. To analyse the pastures, we took 144 vegetation relevés (comprising 201 species) that have been classified into 10 phytocoenological communities elsewhere. Most of these communities are almost entirely built up by perennials, ranging from xerophilous, clearly Mediterranean, to mesophilous, related to medium-European pastures, but a few occurring in shallow soils are dominated by therophytes. As for the soil properties, we analysed texture, pH, depth, bulk density, organic matter, C/N ratio and the carbonates content of 25 samples, correspondingto representative relevés of the communities studied.
Resumo:
A five year program of systematic multi-element geochemical exploration of the Catalonian Coastal Ranges has been initiated by the Geological Survey of Autonomic Government of Catalonia (Generalitat de Catalunya) and the Department of Geological and Geophysical Exploration (University of Barcelona). This paper reports the first stage results of this regional survey, covering an area of 530 km2 in the Montseny Mountains, NE of Barcelona (Spain). Stream sediments for metals and stream waters for fluoride were chosen because of the regional characteristics. Four target areas for future tactic survey were recognized after the prospect. The most important is a 40 km* zone in the Canoves-Vilamajor area, with high base metal values accompanied by Cd, Ni, Co, As and Sb anomalies. Keywords: Catalanides. Geochemical exploration. Stream sediments. Base metal anomalies. Principal Component Analysis.
Resumo:
This report discusses the feasibility of using infrared photoacoustic spectroscopy (PAS) as a viable technique that can quickly provide information on cement composition prior to use. The PAS technique is of interest because the cost is much lower than for other types of instrumentation used for mineral analysis, it requires virtually no sample preparation, and it can perform multi-component analysis in a matter of minutes. Feasibility of the technique was based on the ability of PAS to identify and quantify sulfate species and major cement matrix components. Strengths and limitations of the technique are presented.