967 resultados para microlens arrays


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a model for the control of the radiation pattern of a circular array of antennas, shaping it to address the radiation beam in the direction of the user, in order to reduce the transmitted power and to attenuate interference. The control of the array is based on Artificial Neural Networks (ANN) of the type RBF (Radial Basis Functions), trained from samples generated by the Wiener equation. The obtained results suggest that the objective was reached.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Material surfaces that provide biomimetic cues, such as nanoscale architectures, have been shown to alter cell/biomaterial interactions. Recent studies have identified titania nanotube arrays as strong candidates for use in interfaces on implantable devices due to their ability to elicit improved cellular functionality. However, limited information exists regarding the immune response of nanotube arrays. Thus, in this study, we have investigated the short- and long-term immune cell reaction of titania nanotube arrays. Whole blood lysate (containing leukocytes, thrombocytes and trace amounts of erythrocytes), isolated from human blood, were cultured on titania nanotube arrays and biomedical grade titanium (as a control) for 2 hours and 2 and 7 days. In order to determine the in vitro immune response on titania nanotube arrays, immune cell functionality was evaluated by cellular viability, adhesion, proliferation, morphology, cytokine/chemokine expression, with and without lipopolysaccharide (LPS), and nitric oxide release. The results presented in this study indicate a decrease in short- and long-term monocyte, macrophage and neutrophil functionality on titania nanotube arrays as compared to the control substrate. This work shows a reduced stimulation of the immune response on titania nanotube arrays, identifying this specific nanoarchitecture as a potentially optimal interface for implantable biomedical devices. © 2013 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piezoelectric array transducers applications are becoming usual in the ultrasonic non-destructive testing area. However, the number of elements can increase the system complexity, due to the necessity of multichannel circuitry and to the large amount of data to be processed. Synthetic aperture techniques, where one or few transmission and reception channels are necessary, and the data are post-processed, can be used to reduce the system complexity. Another possibility is to use sparse arrays instead of a full-populated array. In sparse arrays, there is a smaller number of elements and the interelement spacing is larger than half wavelength. In this work, results of ultrasonic inspection of an aluminum plate with artificial defects using guided acoustic waves and sparse arrays are presented. Synthetic aperture techniques are used to obtain a set of images that are then processed with an image compounding technique, which was previously evaluated only with full-populated arrays, in order to increase the resolution and contrast of the images. The results with sparse arrays are equivalent to the ones obtained with full-populated arrays in terms of resolution. Although there is an 8 dB contrast reduction when using sparse arrays, defect detection is preserved and there is the advantage of a reduction in the number of transducer elements and data volume. © 2013 Brazilian Society for Automatics - SBA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sparse arrays have pitch larger than half-wavelength (lambda/2) and there is a reduced number of elements in comparison with a full-populated array. Consequently, there is a reduction in cost, data acquisition and processing. However, conventional beamforming techniques result in large side and grating lobes, and consequently in image artifacts. In this work the instantaneous phase of the signals is used in a beamforming technique instead of the instantaneous amplitudes to improve images obtained from sparse arrays configurations. A threshold based on a statistical analysis and the number of signals used for imaging is applied to each pixel, in order to determine if that pixel is related to a defect or not. Three sets of data are used to evaluate the technique, considering medical and non-destructive testing: a simulated point spread function, a medical phantom and an aluminum plate with 2 lambda-, 7 lambda- and lambda-pitch, respectively. The conventional amplitude image is superposed by the image improved by the instantaneous phase, increasing the reflectors detectability and reducing artifacts for all cases, as well as dead zone for the tested plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An easy way to determine norepinephrine (NE) in biological fluid using a platinum ultramicroelectrode array (Pt-UMEAs) is described. Issues related to UME electrode surface treatment and characterizations are also addressed. At optimized experimental conditions the dynamic concentration range was 1.0 to 10.0 mu mol?L-1 with a detection limit of 40.5 nmol?L-1. The repeatability of current responses for injections of 5 mu mol?L-1 NE was evaluated to be 4.0?% (n=10). This approach obtained excellent sensitivity, a reliable calibration profile and stable electrochemical response for norepinephrine detection. The content of NE in urine samples without any preconcentration, purification, or pretreatment step, was successfully analyzed by the standard addition method using the Pt-UMEAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we present a numerical study of the use of reconfigurable arrays (RCA) for vibro-acoustography (VA) beam formation. A parametric study of the aperture selection, number of channels, number of elements, focal distance, and steering parameters is presented to show the feasibility and evaluate the performance of VA imaging based on RCA. The transducer aperture was based on two concentric arrays driven by two continuous-wave or toneburst signals at slightly different frequencies. The mathematical model considers a homogeneous, isotropic, inviscid medium. The point-spread function of the system is calculated based on angular spectrum methods using the Fresnel approximation for rectangular sources. Simulations considering arrays with 50 x 50 to 200 x 200 elements with number of channels varying in the range of 32 to 128 are evaluated to identify the best configuration for VA. Advantages of two-dimensional and RCA arrays and aspects related to clinical importance of the RCA implementation in VA, such as spatial resolution, image frame rate, and commercial machine implementation, are discussed. It is concluded that RCA transducers can produce spatial resolution similar to confocal transducers and steering is possible in the elevational and azimuthal planes. Optimal settings for number of elements, number of channels, maximum steering, and focal distance are suggested for VA clinical applications. Furthermore, an optimization for beam steering based on the channel assignment is proposed for balancing the contribution of the two waves in the steered focus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a boy presenting submucous cleft palate, hydronephrosis, ventriculoseptal defect, aniridia, and developmental delay. Additional material on 11p13 was cytogenetically visible and array analyses identified a duplicated segment on 15q25-26 chromosome region; further, array analyses revealed a small deletion (49?kb) at 11p13 region involving the ELP4 gene and a duplication at 8p23.1. Results were confirmed with both molecular and molecular cytogenetics techniques. Possibilities for etiological basis of clinical phenotype are discussed. (c) 2012 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, mesoporous titania is prepared by templating latex sphere arrays with four different sphere diameters at the micrometric scale (phi > 1 mu m). The mesoporous titania homogeneously covers the latex spheres and substrate, forming a thin coating characterized by N-2 adsorption isotherm, small angle X-rays scattering, atomic force, field emission and transmission electronic microscopies. Mesoporous titania has been templated into different shapes such as hollow particles and monoliths according to the amount of sol used to fill the voids of the close packed latex spheres. Titania topography strongly depends on the adsorption of polymeric segments over latex spheres surface, which could be decreased by changing the dimensions of latex spheres (phi = 9.5 mu m) generating a lamellar architecture. Thus, micrometric latex sphere arrays can be used to achieve new surface patterns for mesoporous materials via a fast and inexpensive chemical route for construction of functional devices in different technological fields such as energy conversion, inclusion chemistry and biomaterials. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Array seismology is an useful tool to perform a detailed investigation of the Earth’s interior. Seismic arrays by using the coherence properties of the wavefield are able to extract directivity information and to increase the ratio of the coherent signal amplitude relative to the amplitude of incoherent noise. The Double Beam Method (DBM), developed by Krüger et al. (1993, 1996), is one of the possible applications to perform a refined seismic investigation of the crust and mantle by using seismic arrays. The DBM is based on a combination of source and receiver arrays leading to a further improvement of the signal-to-noise ratio by reducing the error in the location of coherent phases. Previous DBM works have been performed for mantle and core/mantle resolution (Krüger et al., 1993; Scherbaum et al., 1997; Krüger et al., 2001). An implementation of the DBM has been presented at 2D large-scale (Italian data-set for Mw=9.3, Sumatra earthquake) and at 3D crustal-scale as proposed by Rietbrock & Scherbaum (1999), by applying the revised version of Source Scanning Algorithm (SSA; Kao & Shan, 2004). In the 2D application, the rupture front propagation in time has been computed. In 3D application, the study area (20x20x33 km3), the data-set and the source-receiver configurations are related to the KTB-1994 seismic experiment (Jost et al., 1998). We used 60 short-period seismic stations (200-Hz sampling rate, 1-Hz sensors) arranged in 9 small arrays deployed in 2 concentric rings about 1 km (A-arrays) and 5 km (B-array) radius. The coherence values of the scattering points have been computed in the crustal volume, for a finite time-window along all array stations given the hypothesized origin time and source location. The resulting images can be seen as a (relative) joint log-likelihood of any point in the subsurface that have contributed to the full set of observed seismograms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel design based on electric field-free open microwell arrays for the automated continuous-flow sorting of single or small clusters of cells is presented. The main feature of the proposed device is the parallel analysis of cell-cell and cell-particle interactions in each microwell of the array. High throughput sample recovery with a fast and separate transfer from the microsites to standard microtiter plates is also possible thanks to the flexible printed circuit board technology which permits to produce cost effective large area arrays featuring geometries compatible with laboratory equipment. The particle isolation is performed via negative dielectrophoretic forces which convey the particles’ into the microwells. Particles such as cells and beads flow in electrically active microchannels on whose substrate the electrodes are patterned. The introduction of particles within the microwells is automatically performed by generating the required feedback signal by a microscope-based optical counting and detection routine. In order to isolate a controlled number of particles we created two particular configurations of the electric field within the structure. The first one permits their isolation whereas the second one creates a net force which repels the particles from the microwell entrance. To increase the parallelism at which the cell-isolation function is implemented, a new technique based on coplanar electrodes to detect particle presence was implemented. A lock-in amplifying scheme was used to monitor the impedance of the channel perturbed by flowing particles in high-conductivity suspension mediums. The impedance measurement module was also combined with the dielectrophoretic focusing stage situated upstream of the measurement stage, to limit the measured signal amplitude dispersion due to the particles position variation within the microchannel. In conclusion, the designed system complies with the initial specifications making it suitable for cellomics and biotechnology applications.