874 resultados para micro structure effects
Resumo:
The effect of water molecules on the conductivity and electrochemical properties of vanadium pentoxide xerogel was studied in connection with changes of morphology upon thermal annealing at different temperatures. It was demonstrated that the conductivity was increased for the samples heated at 150ºC and 270ºC compared to the vanadium pentoxide xerogel. It was also verified a stabilization of electrochemical processes of the insertion and de-insertion of lithium ions the structure of thermally annealed vanadium pentoxide.
Resumo:
EONIA is a market based overnight interest rate, whose role as the starting point of the yield curve makes it critical from the perspective of the implementation of European Central Bank´s common monetary policy in the euro area. The financial crisis that started in 2007 had a large impact on the determination mechanism of this interest rate, which is considered as the central bank´s operational target. This thesis examines the monetary policy implementation framework of the European Central Bank and changes made to it. Furthermore, we discuss the development of the recent turmoil in the money market. EONIA rate is modelled by means of a regression equation using variables related to liquidity conditions, refinancing need, auction results and calendar effects. Conditional volatility is captured by an EGARCH model, and autocorrelation is taken into account by employing an autoregressive structure. The results highlight how the tensions in the initial stage of the market turmoil were successfully countered by ECB´s liquidity policy. The subsequent response of EONIA to liquidity conditions under the full allotment liquidity provision procedure adopted after the demise of Lehman Brothers is also established. A clear distinction in the behavior of the interest rate between the sub-periods was evident. In the light of the results obtained, some of the challenges posed by the exit-strategy implementation will be addressed.
Resumo:
The properties of the paper surface play a crucial role in ensuring suitable quality and runnability in various converting and finishing operations, such as printing. Plasma surface modification makes it possible to modify the surface chemistry of paper without altering the bulk material properties. This also makes it possible to investigate the role of the surface chemistry alone on printability without influencing the porous structure of the pigment-coated paper. Since the porous structure of a pigment coating controls both ink setting and optical properties, surface chemical changes created by a plasma modification have a potential to decouple these two effects and to permit a better optimization of them both. The aim of this work was to understand the effects of plasma surface modification on paper properties, and how it influences printability in the sheet-fed offset process. The objective was to broaden the fundamental understanding of the role of surface chemistry on offset printing. The effects of changing the hydrophilicity/ hydrophobicity and the surface chemical composition by plasma activation and plasma coatings on the properties of coated paper and on ink-paper interactions as well as on sheet-fed offset print quality were investigated. In addition, the durability of the plasma surface modification was studied. Nowadays, a typical sheet-fed offset press also contains units for surface finishing, for example UVvarnishing. The role of the surface chemistry on the UV-varnish absorption into highly permeable and porous pigment-coated paper was also investigated. With plasma activation it was possible to increase the surface energy and hydrophilicity of paper. Both polar and dispersion interactions were found to increase, although the change was greater in the polar interactions due to induced oxygen molecular groups. The results indicated that plasma activation takes place particularly in high molecular weight components such as the dispersion chemicals used to stabilize the pigment and latex particles. Surface composition, such as pigment and binder type, was found to influence the response to the plasma activation. The general trend was that pilot-scale treatment modified the surface chemistry without altering the physical coating structure, whereas excessive laboratory-scale treatment increased the surface roughness and reduced the surface strength, which led to micro-picking in printing. It was shown that pilot-scale plasma activation in combination with appropriate ink oils makes it possible to adjust the ink-setting rate. The ink-setting rate decreased with linseed-oil-based inks, probably due to increased acid-base interactions between the polar groups in the oil and the plasma-treated paper surface. With mineral-oil-based inks, the ink setting accelerated due to plasma activation. Hydrophobic plasma coatings were able to reduce or even prevent the absorption of dampening water into pigmentcoated paper, even when the dampening water was applied under the influence of nip pressure. A uniform hydrophobic plasma coating with sufficient chemical affinity with ink gave an improved print quality in terms of higher print density and lower print mottle. It was also shown that a fluorocarbon plasma coating reduced the free wetting of the UV-varnish into the highly permeable and porous pigment coating. However, when the UV-varnish was applied under the influence of nip pressure, which leads to forced wetting, the role of the surface chemical composition seems to be much less. A decay in surface energy and wettability occurred during the first weeks of storage after plasma activation, after which it leveled off. However, the oxygen/carbon elemental ratio did not decrease as a function of time, indicating that ageing could be caused by a re-orientation of polar groups or by a contamination of the surface. The plasma coatings appeared to be more stable when the hydrophobicity was higher, probably due to fewer interactions with oxygen and water vapor in the air.
Resumo:
Alpha2-Adrenoceptors: structure and ligand binding properties at the molecular level The mouse is the most frequently used animal model in biomedical research, but the use of zebrafish as a model organism to mimic human diseases is on the increase. Therefore it is considered important to understand their pharmacological differences from humans also at the molecular level. The zebrafish Alpha2-adrenoceptors were expressed in mammalian cells and the binding affinities of 20 diverse ligands were determined and compared to the corresponding human receptors. The pharmacological properties of the human and zebrafish Alpha2--adrenoceptors were found to be quite well conserved. Receptor models based on the crystal structures of bovine rhodopsin and the human Beta2-adrenoceptor revealed that most structural differences between the paralogous and orthologous Alpha2--adrenoceptors were located within the second extracellular loop (XL2). Reciprocal mutations were generated in the mouse and human Alpha2--adrenoceptors. Ligand binding experiments revealed that substitutions in XL2 reversed the binding profiles of the human and mouse Alpha2--adrenoceptors for yohimbine, rauwolscine and RS-79948-197, evidence for a role for XL2 in the determination of species-specific ligand binding. Previous mutagenesis studies had not been able to explain the subtype preference of several large Alpha2--adrenoceptor antagonists. We prepared chimaeric Alpha2--adrenoceptors where the first transmembrane (TM1) domain was exchanged between the three human Alpha2--adrenoceptor subtypes. The binding affinities of spiperone, spiroxatrine and chlorpromazine were observed to be significantly improved by TM1 substitutions of the Alpha2a--adrenoceptor. Docking simulations indicated that indirect effects, such as allosteric modulation, are more likely to be involved in this phenomenon rather than specific side-chain interactions between ligands and receptors.
Resumo:
Edge effects are considered a key factor in regulating the structure of plant communities in different ecosystems. However, regardless to few studies, edge influence does not seem to be decisive in semiarid regions such as the Brazilian tropical dry forest known as Caatinga but this issue remains inconclusive. The present study tests the null hypothesis that the plant community of shrubs and trees does not change in its structure due to edge effects. Twenty-four plots (20 x 20 m) were set up in a fragment of Caatinga, in which 12 plots were in the forest edges and 12 plots were inside the fragment. Tree richness, abundance and species composition did not differ between edge and interior plots. The results of this study are in agreement with the pattern previously found for semiarid environments and contrasts with previous results obtained in different environments such as Rainforests, Savanna and Forest of Araucaria, which indicate abrupt differences between the border and interior of the plant communities in these ecosystems, and suggest that the community of woody plants of the Caatinga is not ecologically affected by the presence of edges.
Resumo:
The objective of this study was to evaluate growth and yield of papaya cv. Sunrise solo under trickle irrigation system configurations. A random block design was used with six treatments and four replications. Treatments were: T1- a 32 L h-1 micro sprinkler; T2 - a 43 L h-1 micro sprinkler and T3 - a 60 L h-1 micro sprinkler for four plants; T4 - Drip system with four emitters per plant on one lateral line per crop row; T5 - Drip system with eight emitters per plant on two laterals line per crop row; T6 - Drip system with four emitters per plant on one lateral line distributed as pig tail. The dripper flow rate was 4 L h-1and they were apart each other 0.50 m. Crop growth variables were measured every two weeks. Production variables were evaluated during harvest. The treatment that presented superiority was irrigated by micro sprinkler system with flow rate of 43 L h-1.
Resumo:
Sweet pepper is one of the ten most consumed vegetables in world. Although it develops better under protected environment, the cultivation in tropical countries is practiced in open field due greenhouse structure higher costs. Unfortunately, such practice has compromised the crop to reach either best yield or fruit quality. Since production and cost are the most important criteria for agricultural production, we aimed to evaluate reflective aluminized polypropylene shading net influence on sweet pepper (Capsicum annuum L.) growth and production as intermediary alternative for low/middle income producers from Brazilian tropical regions. Sweet pepper Magali R hybrid was cultivated in two environments: FC - field conditions (control) and RS - reflective shading net with 40% shading rate. RS caused reductions in incident solar radiation (SR) and photosynthetically active radiation (PAR) on the amount of 46.3% and 48.3%, respectively. There were no significant changes in temperature and relative humidity recorded for the two environments. In addition, RS allowed best use efficiency of photosynthetically active radiation since it promoted higher values of plant height, leaf number and area index than those reached on FC on the amount of 29%, 22% and 80 %, respectively. Similarly, plants grown under RS showed higher yield and marketable fruits and promoted less loses by sunscald.
Resumo:
The Fertigation is the combined application of water and nutrients to a crop. It can be adapted to all types of agricultural crops. The objective of this study was to evaluate the effect of urea concentration in irrigation water on electrical conductivity of the soil solution and saturation extract along the first cycle of banana cv. Terra Maranhão. The experiment followed a completely randomized design with six treatments and ten replications. Treatments regarded for using three urea concentrations (1.0; 2.5 and 4.0 g L-1) in irrigation water applied by two micro irrigation systems (microsprinkler and drip). Results showed that there was a linear elevation of electrical conductivity of saturation extract and soil solution with the increase on concentration of urea in the injection solution. Urea should be used under concentrations up to 2.5 g L-1 in irrigation water without causing increase on electric conductivity of soil solution and saturation extract, considering 1.1 dS m-1 as the tolerated value for the crop. Nitrate in the soil solution increased significantly with the increase of urea concentration in the injection solution. The maximum concentration of nitrate in the soil occurred for 4,0 g L-1 concentration of the injection solution.
Resumo:
Transport properties of GaAs / δ – Mn / GaAs / InxGa1-xAs / GaAs structure with Mn δ – layer, which is separated from InxGa1-xAs quantum well (QW) by 3 nm thick GaAs spacer was investigated. This structure with high mobility was characterized by X-ray difractometry and reflectometry. Transport and electrical properties of the structure were measured by using Pulsed Magnetic Field System (PMFS). During investigation of the Shubnikov – de Haas and the Hall effects the main parameters of QW structure such as cyclotron mass, Fermi level, g – factor, Dingle temperature and concentration of holes were estimated. Obtained results show high quality of the prepared structure. However, anomalous Hall effect at temperatures 2.09 K, 3 K, 4.2 K is not clearly observed. Attempts to identify magnetic moment were made. For this purpose the polarity of the filed was changed to the opposite at each shot. As a result hysteresis loop was not observed in the magnetic field dependences of the anomalous Hall resistivity.This can be attributed to the imperfection of the experimental setup.
Resumo:
Investigation of galvanomagnetic effects in nanostructure GaAs/Mn/GaAs/In0.15Ga0.85As/ GaAs is presented. This nanostructure is classified as diluted magnetic semiconductor (DMS). Temperature dependence of transverse magnetoresistivity of the sample was studied. The anomalous Hall effect was detected and subtracted from the total Hall component. Special attention was paid to the measurements of Shubnikov-de Haas oscillations, which exists only in the case of magnetic field aligned perpendicularly to the plane of the sample. This confirms two-dimensional character of the hole energy spectrum in the quantum well. Such important characteristics as cyclotron mass, the Fermi energy and the Dingle temperature were calculated, using experimental data of Shubnikov-de Haas oscillations. The hole concentration and hole mobility in the quantum well also were estimated for the sample. At 4.2 K spin splitting of the maxima of transverse resistivity was observed and g-factor was calculated for that case. The values of the Dingle temperatures were obtained by two different approaches. From the comparison of these values it was concluded that the broadening of Landau levels in the investigated structure is mainly defined by the scattering of charge carriers on the defects of the crystal lattice
Resumo:
The superconducting gap is a basic character of a superconductor. While the cuprates and conventional phonon-mediated superconductors are characterized by distinct d- and s-wave pairing symmetries with nodal and nodeless gap distributions respectively, the superconducting gap distributions in iron-based superconductors are rather diversified. While nodeless gap distributions have been directly observed in Ba1–xKxFe2As2, BaFe2–xCoxAs2, LiFeAs, KxFe2–ySe2, and FeTe1–xSex, the signatures of a nodal superconducting gap have been reported in LaOFeP, LiFeP, FeSe, KFe2As2, BaFe2–xRuxAs2, and BaFe2(As1–xPx)2. Due to the multiplicity of the Fermi surface in these compounds s± and d pairing states can be both nodeless and nodal. A nontrivial orbital structure of the order parameter, in particular the presence of the gap nodes, leads to effects in which the disorder is much richer in dx2–y2-wave superconductors than in conventional materials. In contrast to the s-wave case, the Anderson theorem does not work, and nonmagnetic impurities exhibit a strong pair-breaking influence. In addition, a finite concentration of disorder produces a nonzero density of quasiparticle states at zero energy, which results in a considerable modification of the thermodynamic and transport properties at low temperatures. The influence of order parameter symmetry on the vortex core structure in iron-based pnictide and chalcogenide superconductors has been investigated in the framework of quasiclassical Eilenberger equations. The main results of the thesis are as follows. The vortex core characteristics, such as, cutoff parameter, ξh, and core size, ξ2, determined as the distance at which density of the vortex supercurrent reaches its maximum, are calculated in wide temperature, impurity scattering rate, and magnetic field ranges. The cutoff parameter, ξh(B; T; Г), determines the form factor of the flux-line lattice, which can be obtained in _SR, NMR, and SANS experiments. A comparison among the applied pairing symmetries is done. In contrast to s-wave systems, in dx2–y2-wave superconductors, ξh/ξc2 always increases with the scattering rate Г. Field dependence of the cutoff parameter affects strongly on the second moment of the magnetic field distributions, resulting in a significant difference with nonlocal London theory. It is found that normalized ξ2/ξc2(B/Bc2) dependence is increasing with pair-breaking impurity scattering (interband scattering for s±-wave and intraband impurity scattering for d-wave superconductors). Here, ξc2 is the Ginzburg-Landau coherence length determined from the upper critical field Bc2 = Φ0/2πξ2 c2, where Φ0 is a flux quantum. Two types of ξ2/ξc2 magnetic field dependences are obtained for s± superconductors. It has a minimum at low temperatures and small impurity scattering transforming in monotonously decreasing function at strong scattering and high temperatures. The second kind of this dependence has been also found for d-wave superconductors at intermediate and high temperatures. In contrast, impurity scattering results in decreasing of ξ2/ξc2(B/Bc2) dependence in s++ superconductors. A reasonable agreement between calculated ξh/ξc2 values and those obtained experimentally in nonstoichiometric BaFe2–xCoxAs2 (μSR) and stoichiometric LiFeAs (SANS) was found. The values of ξh/ξc2 are much less than one in case of the first compound and much more than one for the other compound. This is explained by different influence of two factors: the value of impurity scattering rate and pairing symmetry.
Resumo:
Ceramides comprise a class of sphingolipids that exist only in small amounts in cellular membranes, but which have been associated with important roles in cellular signaling processes. The influences that ceramides have on the physical properties of bilayer membranes reach from altered thermodynamical behavior to significant impacts on the molecular order and lateral distribution of membrane lipids. Along with the idea that the membrane physical state could influence the physiological state of a cell, the membrane properties of ceramides have gained increasing interest. Therefore, membrane phenomena related to ceramides have become a subject of intense study both in cellular as well as in artificial membranes. Artificial bilayers, the so called model membranes, are substantially simpler in terms of contents and spatio-temporal variation than actual cellular membranes, and can be used to give detailed information about the properties of individual lipid species in different environments. This thesis focuses on investigating how the different parts of the ceramide molecule, i.e., the N-linked acyl chain, the long-chain sphingoid base and the membrane-water interface region, govern the interactions and lateral distribution of these lipids in bilayer membranes. With the emphasis on ceramide/sphingomyelin(SM)-interactions, the relevance of the size of the SMhead group for the interaction was also studied. Ceramides with methylbranched N-linked acyl chains, varying length sphingoid bases, or methylated 2N (amide-nitrogen) and 3O (C3-hydroxyl) at the interface region, as well as SMs with decreased head group size, were synthesized and their bilayer properties studied by calorimetric and fluorescence spectroscopic techniques. In brief, the results showed that the packing of the ceramide acyl chains was more sensitive to methyl-branching in the mid part than in the distal end of the N-linked chain, and that disrupting the interfacial structure at the amide-nitrogen, as opposed to the C3-hydroxyl, had greater effect on the interlipid interactions of ceramides. Interestingly, it appeared that the bilayer properties of ceramides could be more sensitive to small alterations in the length of the long-chain base than what was previously reported for the N-linked acyl chain. Furthermore, the data indicated that the SM-head group does not strongly influence the interactions between SMs and ceramides. The results in this thesis illustrate the pivotal role of some essential parts of the ceramide molecules in determining their bilayer properties. The thesis provides increased understanding of the molecular aspects of ceramides that possibly affect their functions in biological membranes, and could relate to distinct effects on cell physiology.
Resumo:
Inorganic-organic sol-gel hybrid coatings can be used for improving and modifying properties of wood-based materials. By selecting a proper precursor, wood can be made water repellent, decay-, moisture- or UV-resistant. However, to control the barrier properties of sol-gel coatings on wood substrates against moisture uptake and weathering, an understanding of the surface morphology and chemistry of the deposited sol-gel coatings on wood substrates is needed. Mechanical pulp is used in production of wood-containing printing papers. The physical and chemical fiber surface characteristics, as created in the chosen mechanical pulp manufacturing process, play a key role in controlling the properties of the end-use product. A detailed understanding of how process parameters influence fiber surfaces can help improving cost-effectiveness of pulp and paper production. The current work focuses on physico-chemical characterization of modified wood-based materials with surface sensitive analytical tools. The overall objectives were, through advanced microscopy and chemical analysis techniques, (i) to collect versatile information about the surface structures of Norway spruce thermomechanical pulp fiber walls and understand how they are influenced by the selected chemical treatments, and (ii) to clarify the effect of various sol-gel coatings on surface structural and chemical properties of wood-based substrates. A special emphasis was on understanding the effect of sol-gel coatings on the water repellency of modified wood and paper surfaces. In the first part of the work, effects of chemical treatment on micro- and nano-scale surface structure of 1st stage TMP latewood fibers from Norway spruce were investigated. The chemicals applied were buffered sodium oxalate and hydrochloric acid. The outer and the inner fiber wall layers of the untreated and chemically treated fibers were separately analyzed by light microscopy, atomic force microscopy and field-emission scanning electron microscopy. The selected characterization methods enabled the demonstration of the effect of different treatments on the fiber surface structure, both visually and quantitatively. The outer fiber wall areas appeared as intact bands surrounding the fiber and they were clearly rougher than areas of exposed inner fiber wall. The roughness of the outer fiber wall areas increased most in the sodium oxalate treatment. The results indicated formation of more surface pores on the exposed inner fiber wall areas than on the corresponding outer fiber wall areas as a result of the chemical treatments. The hydrochloric acid treatment seemed to increase the surface porosity of the inner wall areas. In the second part of the work, three silane-based sol-gel hybrid coatings were selected in order to improve moisture resistance of wood and paper substrates. The coatings differed from each other in terms of having different alkyl (CH3–, CH3-(CH2)7–) and fluorocarbon (CF3–) chains attached to the trialkoxysilane sol-gel precursor. The sol-gel coatings were deposited by a wet coating method, i.e. spraying or spreading by brush. The effect of solgel coatings on surface structural and chemical properties of wood-based substrates was studied by using advanced surface analyzing tools: atomic force microscopy, X-ray photoelectron spectroscopy and time-of-flight secondary ion spectroscopy. The results show that the applied sol-gel coatings, deposited as thin films or particulate coatings, have different effects on surface characteristics of wood and wood-based materials. The coating which has a long hydrocarbon chain (CH3-(CH2)7–) attached to the silane backbone (octyltriethoxysilane) produced the highest hydrophobicity for wood and wood-based materials.
Resumo:
One dune habitat in the semi-arid Caatinga Biome, rich in endemisms, is described based on plant species composition, woody plant density, mean height and phenology and a multivariate analysis of the micro-habitats generated by variables associated to plants and topography. The local flora is composed mainly by typically sand-dweller species of Caatinga, suggesting the existence of a phytogeographic unity related to the sandy areas in the Caatinga biome, which seems to be corroborated by faunal distribution. Moreover, some species are probably endemic from the dunes, a pattern also found in vertebrates. The plant distribution is patchy, there is no conspicuous herbaceous layer and almost 50% of the ground represents exposed sand. Phenology is not synchronized among species, occurring leaves budding and shedding, flowers development and anthesis, fruits production and dispersion both in rainy and dry seasons. Leaf shedding is low compared to the level usually observed in Caatinga areas and about 50% of the woody individuals were producing leaves in both seasons. Spectrum of dispersal syndromes shows an unexpected higher proportion of zoochorous species among the phanerophytes, accounting for 31.3% of the species, 78.7% of the total frequency and 78.6% of the total density. The habitat of the dunes is very simple and homogeneous in structure and most of environmental variance in the area is explained by one gradient of woody plants density and another of increase of Bromelia antiacantha Bertol. (Bromeliaceae) and Tacinga inamoena (K. Schum.) N.P. Taylor & Stuppy (Cactaceae) toward valleys, which seem to determine two kinds of protected micro-habitats for the small cursorial fauna.
Resumo:
The influence of climatic variations on the herbaceous component of the "caatinga" vegetation was examined in the state of Pernambuco, Brazil. A total of 105 1 × 1 m-plots were established, of which 35 were in a level micro-habitat, 35 in a riparian micro-habitat, and 35 in a stony microhabitat. During two consecutive years all herbaceous plants in these plots were counted, measured (height and diameter), and collected for identification. The Shannon-Wiener diversity index and the equitability were calculated for each year, as well as the density, frequency, dominance, total basal area and importance index for each species. The total annual pluviometric was 819.5 and 448.8 mm in 2002 and 2003, respectively. The herbaceous flora in the study area was composed of 71 species, of which 58 were sampled in the plots. The families with the greatest species richness were Malvaceae (8 species), Euphorbiaceae (7), Poaceae (6), Convolvulaceae (4), Fabaceae (4), and Portulacaceae (4). The diversity indices were 2.66 and 3.01 nats ind-1 in 2002 and 2003, respectively. The density, frequency, dominance and importance value of herbaceous populations, as well as, the height and diameter of plants were low in the dryer year. The riparian group was the most isolated of the microhabitats examined, both in terms of its floristic and its population structure. Annual seasonal climatic variations greatly modified these populations structure during the course of this study, emphasizing the fact that long-term studies are needed in order to better understand the dynamics of the herbaceous component of the "caatinga" vegetation.