864 resultados para meticillin resistant Staphylococcus aureus
Resumo:
Based on a former study from our group, one subtype of Staphylococcus aureus was associated with high within-herd prevalence of mastitis, whereas the other subtypes were associated with a low prevalence (sporadic intramammary infection). To confirm this hypothesis, a prospective study was done in 29 Swiss dairy herds. In particular, milk samples were collected from 10 herds with Staph. aureus herd problems (cases) and compared with samples from 19 herds with only sporadic cases of with Staph. aureus intramammary infection (controls). The isolates were tested for their virulence gene pattern and genotyped by PCR amplification of the 16S-23S rRNA intergenic spacer. The patterns and genotypes were then associated and compared with epidemiological and clinical data. Confirming the hypothesis, one particular subtype (genotype B) was associated with high within-herd and within-cow prevalence of intramammary infection, whereas the other subtypes were associated with low within-herd prevalence and infected single quarters. The gene patterns and genotypes were highly related, demonstrating the genetic diversity of the genotypes. The somatic cell counts were clearly increased in herds with a genotype B problem compared with herds with infections of other genotypes. Based on the different clinical properties and treatment consequences associated with these different genotypes found in Switzerland, we recommend subtyping Staph. aureus in other countries to determine if this finding is universally applicable.
Resumo:
Based on our clinical experience on bovine mastitis, we hypothesized that subtypes of Staphylococcus aureus (S. aureus) exist which differ in their contagious and pathogenic properties. In order to investigate this hypothesis, we analyzed strains of S. aureus isolated from spontaneous intramammary infection (IMI) with their virulence gene patterns and genotypes obtained by PCR amplification of the 16S-23S rRNA intergenic spacer (RS-PCR). The genotypes were then associated with epidemiological and clinical data including 26 herds. The results demonstrated a high association between genotypes and virulence gene patterns as well as between epidemiological and pathogenic properties of S. aureus. In particular, genotype B was related to high contagiosity and increased pathogenicity whereas the other types (C, OG) were found with infection of single cows. Because of the high clinical relevance, our results indicate the need to subtype the IMI-associated strains of S. aureus in the future.
Resumo:
A total of 272 staphylococcal isolates from cases of bovine mastitis (159 Staphylococcus aureus) belonging to 12 different species were identified with ID32 STAPH galleries, and 51 of them were confirmed by 16S rRNA gene (rrs) sequencing. The same isolates were examined for their hemolytic activity on sheep blood agar, DNase activity, and coagulase activity and with two rapid identification kits (Slidex Staph Plus kit and RAPIDEC Staph from Bio-Merieux). The results of this study confirm those obtained by other groups with hemolysis, DNase, and coagulase. Only 50% of S. aureus isolates from mastitis cases show coagulase activity after 4 h of incubation, and a 24-h incubation is necessary for the full sensitivity of this test. In contrast to results from other studies with human isolates, the Slidex Staph Plus kit was not sensitive enough for the identification of S. aureus from bovine mastitis samples. The aurease test of the RAPIDEC Staph kit showed 100% sensitivity and 100% specificity. Used in conjunction with hemolysis patterns, the RAPIDEC Staph kit is therefore very well adapted to rapid, efficient, and cost-effective identification of S. aureus in cultures from bovine mastitis samples. Sequencing of rrs genes also proved very efficient in identifying the Staphylococcus species encountered in these samples and confirming phenotypical identification results with unsatisfactory scores. With continuously improving technologies and decreasing costs, genetic identification methods like rrs gene sequencing will soon find a place in routine veterinary diagnostics.
Resumo:
Genetic characterization of methicillin-resistant Staphylococcus pseudintermedius (MRSP) from Thailand and Israel revealed the presence of a predominant atypical clonal lineage which was not typeable by SmaI-PFGE and SCCmec typing. All the atypical isolates (n = 34) belonged to CC45 (30 ST45 and 2 ST179 isolates, 1 ST57 isolate, and 1 ST85 isolate). The isolates originated from healthy and diseased dogs and cats, as well as from the environment of one clinic. Cfr9I-pulsed-field gel electrophoresis (Cfr9I-PFGE) and dru typing permitted the further distinction of CC45 isolates from the two different countries. Microarray analysis identified genes that confer resistance to β-lactams (mecA; blaZ), aminoglycosides [aac(6')-Ie-aph(2')-Ia; aph(3')-III; ant(6)-Ia], macrolides and lincosamides [erm(B)], tetracyclines [tet(M)], trimethoprim [dfr(G)], streptothricin (sat4), and chloramphenicol (catpC221). Fluoroquinolone resistance was attributed to specific amino acid substitutions, i.e., Ser84Leu in GyrA and Ser80Ile and Asp84Asn in GrlA. A novel pseudo-staphylococcal cassette chromosome (ΨSCCmec57395) element was identified in MRSP strain 57395 (sequence type ST45) by whole-genome sequencing. The 12,282-bp ΨSCCmec57395 element contained a class C1 mec gene complex but no ccr genes. In addition to the methicillin resistance gene mecA, ΨSCCmec57395 also carried determinants of resistance to heavy metals, such as arsenic, cadmium, and copper. Bsu36I restriction analysis of the ΨSCCmec57395 element amplified by long-range PCR revealed the presence of ΨSCCmec57395 in the 33 additional isolates of MRSP CC45. The ΨSCCmec57395 element represents a new class of SCCmec and has been identified in MRSP of CC45, which is a predominant clonal lineage in Israel and Thailand.
Resumo:
As accurate discrimination between Staphylococcus (S.) aureus and NSA (non-S. aureus staphylococci) involved in bovine mastitis is essential in terms of clinical prognosis and outcome, the aim of this study was to reevaluate the classical bacteriological procedures to identify these agents. Various media and the coagulase tube test were investigated using 116 strains of S. aureus and 115 of NSA, all isolated from cows with spontaneous intramammary infections (IMI). Furthermore, 25 NSA reference strains were analyzed. The study demonstrated that a few media were appropriate for differentiating S. aureus from NSA, provided that the staphylococci were isolated from bovine IMI. Evaluation of hemolysis further revealed that double or incomplete hemolysis are specific for S. aureus and are, therefore, a decisive diagnostic criterion. For strains showing complete hemolysis, maximal discrimination between S. aureus and NSA was observed by subculturing them on CHROMagar Staph. aureus.
Resumo:
Staphylococcus aureus is an opportunistic bacterial pathogen that can infect humans and other species. It utilizes an arsenal of virulence factors to cause disease, including secreted and cell wall anchored factors. Secreted toxins attack host cells, and pore-forming toxins destroy target cells by causing cell lysis. S. aureus uses cell-surface adhesins to attach to host molecules thereby facilitating host colonization. The Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) are a family of cell-wall anchored proteins that target molecules like fibronectin and fibrinogen. The Serine-aspartate repeat (Sdr) proteins are a subset of staphylococcal MSCRAMMs that share similar domain organization. Interestingly, the amino-terminus, is composed of three immunoglobulin-folded subdomains (N1, N2, and N3) that contain ligand-binding activity. Clumping factors A and B (ClfA and ClfB) and SdrG are Sdr proteins that bind to fibrinogen (Fg), a large, plasma glycoprotein that is activated during the clotting cascade to form fibrin. In addition to recognizing fibrinogen, ClfA and ClfB can bind to other host ligands. Analysis of S. aureus strains that cause osteomyelitis led to the discovery of the bone-sialoprotein-binding protein (Bbp), an Sdr protein. Because several MSCRAMMs target more than one molecule, I hypothesized that Bbp may recognize other host proteins. A ligand screen revealed that the recombinant construct BbpN2N3 specifically recognizes human Fg. Surface plasmon resonance was used to determine the affinity of BbpN2N3 for Fg, and a dissociation constant of 540 nM was determined. Binding experiments performed with recombinant Fg chains were used to map the binding of BbpN2N3 to the Fg Aalpha chain. Additionally, Bbp expressed on the surface of Lactococcus lactis and S. aureus Newman bald mediated attachment of these bacteria to Fg Aalpha. To further characterize the interaction between the two proteins, isothermal titration calorimetry and inhibition assays were conducted with synthetic Fg Aalpha peptides. To determine the physiological implications of Bbp binding to Fg, the effect of Bbp on fibrinogen clotting was studied. Results show that Bbp binding to Fg inhibits the formation of fibrin. The consequences of this interaction are currently under investigation. Together, these data demonstrate that human Fg is a novel ligand for Bbp. This study indicates that the MSCRAMM Bbp may aid in staphylococcal attachment by targeting both an extracellular matrix and a blood plasma protein. The implications of these novel findings are discussed.
Resumo:
Using 98 clinical methicillin-susceptible Staphylococcus aureus isolates of known beta-lactamase (Bla) type, we found a pronounced inoculum effect for cephalexin (mostly Bla type A and C strains), a mild inoculum effect for cephalothin (especially types B and C), and no inoculum effects for ceftriaxone and cefuroxime. Ceftobiprole showed the lowest MICs at a high inoculum but with a slight increase for Bla-positive versus Bla-negative strains. Since a potential therapeutic effect associated with a cephalosporin inoculum effect has been described, further studies are warranted.
Resumo:
Methicillin resistance has emerged in clinical isolates of Staphylococcus pseudintermedius from cats in Switzerland. Three cats suffering from urinary tract infections were infected with methicillin-resistant S. pseudintermedius (MRSP). Phenotypic and genotypic characterization of the resistance profile showed that the isolates displayed resistance to all beta-lactams and cephalosporins (blaZ, mecA), fluoroquinolones, tetracyclines [tet(K)], macrolides, lincosamides and streprogramins B [erm(B)], chloramphenicol (catpC221), trimethoprim [dfr(G)] and the aminoglycosides gentamicin [aac(6')-Ie-aph(2')-Ia], kanamycin and neomycin [aph(3')-III] and streptomycin [ant(6)-Ia]. They also harbor the leukocidin gene lukS-I. MRSP represents a new challenge for antibiotic therapy and this zoonotic bacteria may rapidly spread to animals and humans.
Resumo:
Fluoroquinolone- and methicillin-resistant Staphylococcus pseudintermedius isolates harbor two new staphylococcal cassette chromosome mec (SCCmec) elements that belong to class A, allotype 3 (SCCmec II-III), and to the new allotype 5 (SCCmec VII). Analysis of the complete nucleotide sequences of the topoisomerase loci gyrB/gyrA and grlB/grlA revealed mutations involved in fluoroquinolone resistance.
Resumo:
Staphylococcus aureus genotype B (GTB) is a contagious mastitis pathogen in cattle, occurring in up to 87% of individuals. Because treatment is generally insufficient, culling is often required, leading to large economic loss in the Swiss dairy industry. As the detection of this pathogen in bulk tank milk (BTM) would greatly facilitate its control, a novel real-time quantitative PCR-based assay for BTM has previously been developed and is now being evaluated for its diagnostic properties at the herd level. Herds were initially classified as to their Staph. aureus GTB status by a reference method. Using BTM and herd pools of single-quarter and 4-quarter milk, the herds were then grouped by the novel assay, and the resulting classifications were compared. A total of 54 dairy herds were evaluated. Using the reference method, 21 herds were found to be GTB positive, whereas 33 were found to be negative. Considering the novel assay using both herd pools, all herds were grouped correctly, resulting in maximal diagnostic sensitivities (100%) and specificities (100%). For BTM samples, diagnostic sensitivities and specificities were 90 and 100%, respectively. Two herds were false negative in BTM, because cows with clinical signs of mastitis were not milked into the tank. Besides its excellent diagnostic properties, the assay is characterized by its low detection level, high efficiency, and its suitability for automation. Using the novel knowledge and assay, eradication of Staph. aureus GTB from a dairy herd may be considered as a realistic goal.
Resumo:
Abstract Staphylococcus aureus is a major mastitis-causing pathogen. Various genotypes have been recently identified in Switzerland but Staph. aureus genotype B (GTB) was the only genotype associated with high within-herd prevalence. The risk of introducing this Staph. aureus genotype into a herd may be increased by frequent animal movements. This may also be the case when cows from different herds of origin are commingled and share their milking equipment for a limited period of time. The aim of the present study was to determine the prevalence of Staph. aureus GTB in seasonally communal dairy herds before and after a summer period when dairy farming is characterized by mixing cows from different herds of origin in 1 communal operation. In addition, the environment was investigated to identify potential Staph. aureus GTB reservoirs relevant for transmission of the disease. A total of 829 cows from 110 herds of origin in 9 communal operations were included in the study. Composite milk samples were collected from all cows during the first or second milking after arrival at the communal operation and again shortly before the end of the season. Swab samples from the environment, involved personnel, and herding dogs present were collected before the cows arrived. At the end of the season, sampling of personnel was repeated. All samples were analyzed for the presence of Staph. aureus GTB using an established quantitative PCR. At the beginning of the season, Staph. aureus GTB-positive cows were identified in 7 out of 9 communal operations and the within-communal operation prevalence ranged from 2.2 to 38.9%. At the second sampling, all communal operations were Staph. aureus GTB positive, showing within-communal operation prevalence from 1 to 72.1%. The between-herd of origin prevalence increased from 27.3 to 56.6% and the cow-level prevalence increased from 11.2% at the beginning of the season to 29.6% at the end of the season. On 3 different communal operations, Staph. aureus GTB-positive swabs from seasonally employed personnel were identified at the end of the season. The results indicate that Staph. aureus GTB can easily spread in communal operations when cows from different herds of origin are mixed during the summer season. Effective management measures need to be designed to prevent the spread of Staph. aureus GTB in seasonally communal herds. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved. KEYWORDS: Staphylococcus aureus; biosecurity; communal herd; epidemiology
Resumo:
Bovine mastitis is a frequent problem in Swiss dairy herds. One of the main pathogens causing significant economic loss is Staphylococcus aureus. Various Staph. aureus genotypes with different biological properties have been described. Genotype B (GTB) of Staph. aureus was identified as the most contagious and one of the most prevalent strains in Switzerland. The aim of this study was to identify risk factors associated with the herd-level presence of Staph. aureus GTB and Staph. aureus non-GTB in Swiss dairy herds with an elevated yield-corrected herd somatic cell count (YCHSCC). One hundred dairy herds with a mean YCHSCC between 200,000 and 300,000cells/mL in 2010 were recruited and each farm was visited once during milking. A standardized protocol investigating demography, mastitis management, cow husbandry, milking system, and milking routine was completed during the visit. A bulk tank milk (BTM) sample was analyzed by real-time PCR for the presence of Staph. aureus GTB to classify the herds into 2 groups: Staph. aureus GTB-positive and Staph. aureus GTB-negative. Moreover, quarter milk samples were aseptically collected for bacteriological culture from cows with a somatic cell count ≥150,000cells/mL on the last test-day before the visit. The culture results allowed us to allocate the Staph. aureus GTB-negative farms to Staph. aureus non-GTB and Staph. aureus-free groups. Multivariable multinomial logistic regression models were built to identify risk factors associated with the herd-level presence of Staph. aureus GTB and Staph. aureus non-GTB. The prevalence of Staph. aureus GTB herds was 16% (n=16), whereas that of Staph. aureus non-GTB herds was 38% (n=38). Herds that sent lactating cows to seasonal communal pastures had significantly higher odds of being infected with Staph. aureus GTB (odds ratio: 10.2, 95% CI: 1.9-56.6), compared with herds without communal pasturing. Herds that purchased heifers had significantly higher odds of being infected with Staph. aureus GTB (rather than Staph. aureus non-GTB) compared with herds without purchase of heifers. Furthermore, herds that did not use udder ointment as supportive therapy for acute mastitis had significantly higher odds of being infected with Staph. aureus GTB (odds ratio: 8.5, 95% CI: 1.6-58.4) or Staph. aureus non-GTB (odds ratio: 6.1, 95% CI: 1.3-27.8) than herds that used udder ointment occasionally or regularly. Herds in which the milker performed unrelated activities during milking had significantly higher odds of being infected with Staph. aureus GTB (rather than Staph. aureus non-GTB) compared with herds in which the milker did not perform unrelated activities at milking. Awareness of 4 potential risk factors identified in this study guides implementation of intervention strategies to improve udder health in both Staph. aureus GTB and Staph. aureus non-GTB herds.
Resumo:
Staphylococcus aureus is one of the most important pathogens causing mastitis in dairy cows and in Mediterranean buffaloes. Genotype B (GTB) is contagious in dairy cows and may occur in up to 87% of cows of a dairy herd. It was the aim of this study to evaluate genotypes present, clinical outcomes, and prevalence of Staph. aureus in milk samples of primiparous Mediterranean dairy buffaloes. Two hundred composite milk samples originating from 40 primiparous buffaloes were collected from May to June 2012, at d 10, 30, 60, 90, and 150 d in milk (DIM) to perform somatic cell counts and bacteriological cultures. Daily milk yields were recorded. Before parturition until 40 to 50 DIM, all primiparous animals were housed separated from the pluriparous animals. Milking was performed in the same milking parlor, but the primiparous animals were milked first. After 50 DIM, the primiparous were mixed with the pluriparous animals, including the milking procedure. Individual quarter samples were collected from each animal, and aliquots of 1 mL were mixed and used for molecular identification and genotyping of Staph. aureus. The identification of Staph. aureus was performed verifying the presence of nuc gene by nuc gene PCR. All the nuc-positive isolates were subjected to genotype analysis by means of PCR amplification of the 16S-23S rRNA intergenic spacer region and analyzed by a miniaturized electrophoresis system. Of all 200 composite samples, 41 (20.5%) were positive for Staph. aureus, and no genotype other than GTB was identified. The prevalence of samples positive for Staph. aureus was 0% at 10 DIM and increased to a maximum of 22/40 (55%) at 90 DIM. During the period of interest, 14 buffaloes tested positive for Staph. aureus once, 6 were positive twice, and 5 were positive 3 times, whereas 15 animals were negative at every sampling. At 90 and 150 DIM, 7 (17.5%) and 3 buffaloes (7.5%), respectively, showed clinical mastitis (CM), and only 1 (2.5%) showed CM at both samplings. At 60, 90, and 150 DIM, 1 buffalo was found with subclinical mastitis at each sampling. At 30, 60, 90, and 150 DIM, 2.5 (1/40), 22.5 (9/40), 35 (14/40), and 10% (4/40) were considered affected by intramammary infection, respectively. Buffaloes with CM caused by Staph. aureus had statistically significantly higher mean somatic cell count values (6.06 ± 0.29, Log10 cells/mL ± standard deviation) and statistically significantly lower mean daily milk yields (7.15 ± 1.49, liters/animal per day) than healthy animals (4.69 ± 0.23 and 13.87 ± 2.64, respectively), buffaloes with IMI (4.82 ± 0.23 and 11.16 ± 1.80, respectively), or with subclinical mastitis (5.47 ± 0.10 and 10.33 ± 0.68, respectively). Based on our knowledge, this is the first time that Staph. aureus GTB has been identified in milk samples of dairy Mediterranean buffaloes.
Resumo:
Staphylococcus aureus is a major mastitis-causing pathogen in dairy cows. The latex agglutination-based Staphaurex test allows bovine S. aureus strains to be grouped into Staphaurex latex agglutination test (SLAT)-negative [SLAT(-)] and SLAT-positive [SLAT(+)] isolates. Virulence and resistance gene profiles within SLAT(-) isolates are highly similar, but differ largely from those of SLAT(+) isolates. Notably, specific genetic changes in important virulence factors were detected in SLAT(-) isolates. Based on the molecular data, it is assumed that SLAT(+) strains are more virulent than SLAT(-) strains. The objective of this study was to investigate if SLAT(-) and SLAT(+) strains can differentially induce an immune response with regard to their adhesive capacity to epithelial cells in the mammary gland and in turn, could play a role in the course of mastitis. Primary bovine mammary epithelial cells (bMEC) were challenged with suspensions of heat inactivated SLAT(+) (n = 3) and SLAT(-) (n = 3) strains isolated from clinical bovine mastitis cases. After 1, 6, and 24 h, cells were harvested and mRNA expression of inflammatory mediators (TNF-α, IL-1β, IL-8, RANTES, SAA, lactoferrin, GM-CSF, COX-2, and TLR-2) was evaluated by reverse transcription and quantitative PCR. Transcription (ΔΔCT) of most measured factors was induced in challenged bMEC for 6 and 24 h. Interestingly, relative mRNA levels were higher (P<0.05) in response to SLAT(+) compared to SLAT(-) strains. In addition, adhesion assays on bMEC also showed significant differences between SLAT(+) and SLAT(-) strains. The present study clearly shows that these two S. aureus strain types cause a differential immune response of bMEC and exhibit differences in their adhesion capacity in vitro. This could reflect differences in the severity of mastitis that the different strain types may induce.