865 resultados para metals and alloys
Resumo:
Motivados por estudos experimentais acerca de monocamadas de metais de transição 3d sobre superfícies de Pd, nesta dissertação investigamos o complexo magnetismo de nanoestruturas, embebidas ou adsorvidas, em superfícies metálicas através de cálculos de primeiros princípios. Utilizamos o método RS-LMTO-ASA (Real Space - Linear MuffinTin Orbital - Atomic Sphere Approximation), o qual é baseado na teoria do funcional da densidade (DFT - Density Functional Theory) e implementado para o cálculo de estruturas magnéticas não colineares. Com este propósito, investigamos nanoestruturas embebidas e ligas (2 x 2) de metais 3d (Cr, Mn, Fe, Co e Ni) na superfície Pd (110), além de nanoestruturas de Cr adsorvidas sobre a superfície de Pd (111). Primeiro, para as nanoestruturas embebidas na superfície Pd (110), analisamos a variação do momento magnético de spin orbital com relação ao número de vizinhos e de valência dos metais 3d. Também mostramos que estas estruturas têm ordenamento magnético colinear, exceto as de Cr e Mn, que apresentam magnetismo não colinear associado à frustração geométrica. Para o caso de nanofios de Cr adsorvidos sobre a superfície de Pd (111), verificamos uma configuração colinear antiferromagnética para cadeias com até 9 átomos. Para o nanofio com 10 átomos obtivemos uma configuração tipo antiferromagnética inclinada (canted). No caso de nanoestruturas de Cr bidimensionais, verificamos complexas configurações magnéticas não colineares com diferentes quiralidades.
Resumo:
Pós-graduação em Reabilitação Oral - FOAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Admiralty Bay (Antarctica) hosts three scientific stations (Ferraz, Arctowski and Macchu Picchu), which require the use of fossil fuel as an energy source. Fossil fuels are also considered the main source of pollution in the area, representing important inputs of major pollutants (organic compounds) and trace metals and metalloids of environmental interest. Accordingly, this work presents the results of As, Cd, Cr, Cu, Ni, Pb and Zn in sediment profiles from Admiralty Bay. The sediment results from Ferraz station were slightly higher than the other sampling sites. The highest contents were observed for Cu and Zn (from 44 to 89 mg kg(-1)). Otherwise, by using enrichment factors and geochronology analysis, the most relevant enrichment was observed for As in the samples collected close to the Ferraz station, indicating that increasing As content may be associated with the activities associated with this site. Published by Elsevier Ltd.
Resumo:
We aimed to develop site-specific sediment quality guidelines (SQGs) for two estuarine and port zones in Southeastern Brazil (Santos Estuarine System and Paranagua Estuarine System) and three in Southern Spain (Ria of Huelva, Bay of Cadiz, and Bay of Algeciras), and compare these values against national and traditionally used international benchmark values. Site-specific SQGs were derived based on sediment physical-chemical, toxicological, and benthic community data integrated through multivariate analysis. This technique allowed the identification of chemicals of concern and the establishment of effects range correlatively to individual concentrations of contaminants for each site of study. The results revealed that sediments from Santos channel, as well as inner portions of the SES, are considered highly polluted (exceeding SQGs-high) by metals, PAHs and PCBs. High pollution by PAHs and some metals was found in Sao Vicente channel. In PES, sediments from inner portions (proximities of the Ponta do Mix port`s terminal and the Port of Paranagua) are highly polluted by metals and PAHs, including one zone inside the limits of an environmental protection area. In Gulf of Cadiz, SQGs exceedences were found in Ria of Huelva (all analysed metals and PAHs), in the surroundings of the Port of CAdiz (Bay of CAdiz) (metals), and in Bay of Algeciras (Ni and PAHs). The site-specific SQGs derived in this study are more restricted than national SQGs applied in Brazil and Spain, as well as international guidelines. This finding confirms the importance of the development of site-specific SQGs to support the characterisation of sediments and dredged material. The use of the same methodology to derive SQGs in Brazilian and Spanish port zones confirmed the applicability of this technique with an international scope and provided a harmonised methodology for site-specific SQGs derivation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The increasing contamination of aquatic environments motivates studies on the interactions among natural dissolved organic matter, metals, and the biota. This investigation focused on the organic exudates of the toxic cyanobacteria Cylindrospermopsis raciborskii as a Cu carrier through a three-level aquatic trophic chain (bacteria, protozoa, and copepod). The effects of bacteria activity and growth on the metal-organic complexes were evaluated through changes in free Cu2+ ions, total dissolved, and total particulate Cu. To be sure that the added copper would be complexed to the exudates, its complexing properties were previously determined. The cyanobacteria exudate-Cu complexes were furnished to bacteria that were further used as a food source to the protozoan Paramercium caudatum. This was then furnished as food to the copepod Mesocyclops sp. The results showed that, in general, the cyanobacterial exudates decreased Cu bioavailability and toxicity to the first trophic level (bacteria), but because the heterotrophic bacteria accumulated Cu, they were responsible for the transference for the otherwise low availability metal form. Both the bacteria and protozoan organisms accumulated Cu, but no metal accumulation was detected in the copepods.
Resumo:
Biohybrid derivatives of π-conjugated materials are emerging as powerful tools to study biological events through the (opto)electronic variations of the π-conjugated moieties, as well as to direct and govern the self-assembly properties of the organic materials through the organization principles of the bio component. So far, very few examples of thiophene-based biohybrids have been reported. The aim of this Ph. D thesis has been the development of oligothiophene-oligonucleotide hybrid derivatives as tools, on one side, to detect DNA hybridisation events and, on the other, as model compounds to investigate thiophene-nucleobase interactions in the solid state. To obtain oligothiophene bioconjugates with the required high level of purity, we first developed new synthetic ecofriendly protocols for the synthesis of thiophene oligomers. Our innovative heterogeneous Suzuki coupling methodology, carried out in EtOH/water or isopropanol under microwave irradiation, allowed us to obtain alkyl substituted oligothiophenes and thiophene based co-oligomers in high yields and very short reaction times, free from residual metals and with improved film forming properties. These methodologies were subsequently applied in the synthesis of oligothiophene-oligonucleotide conjugates. Oligothiophene-5-labeled deoxyuridines were synthesized and incorporated into 19-meric oligonucletide sequences. We showed that the oligothiophene-labeled oligonucletide sequences obtained can be used as probes to detect a single nucleotide polymorphism (SNP) in complementary DNA target sequences. In fact, all the probes showed marked variations in emission intensity upon hybridization with a complementary target sequence. The observed variations in emitted light were comparable or even superior to those reported in similar studies, showing that the biohybrids can potentially be useful to develop biosensors for the detection of DNA mismatches. Finally, water-soluble, photoluminescent and electroactive dinucleotide-hybrid derivatives of quaterthiophene and quinquethiophene were synthesized. By means of a combination of spectroscopy and microscopy techniques, electrical characterizations, microfluidic measurements and theoretical calculations, we were able to demonstrate that the self-assembly modalities of the biohybrids in thin films are driven by the interplay of intra and intermolecular interactions in which the π-stacking between the oligothiophene and nucleotide bases plays a major role.
Resumo:
This PhD thesis reports on car fluff management, recycling and recovery. Car fluff is the residual waste produced by car recycling operations, particularly from hulk shredding. Car fluff is known also as Automotive Shredder Residue (ASR) and it is made of plastics, rubbers, textiles, metals and other materials, and it is very heterogeneous both in its composition and in its particle size. In fact, fines may amount to about 50%, making difficult to sort out recyclable materials or exploit ASR heat value by energy recovery. This 3 years long study started with the definition of the Italian End-of-Life Vehicles (ELVs) recycling state of the art. A national recycling trial revealed Italian recycling rate to be around 81% in 2008, while European Community recycling target are set to 85% by 2015. Consequently, according to Industrial Ecology framework, a life cycle assessment (LCA) has been conducted revealing that sorting and recycling polymers and metals contained in car fluff, followed by recovering residual energy, is the route which has the best environmental perspective. This results led the second year investigation that involved pyrolysis trials on pretreated ASR fractions aimed at investigating which processes could be suitable for an industrial scale ASR treatment plant. Sieving followed by floatation reported good result in thermochemical conversion of polymers with polyolefins giving excellent conversion rate. This factor triggered ecodesign considerations. Ecodesign, together with LCA, is one of the Industrial Ecology pillars and it consists of design for recycling and design for disassembly, both aimed at the improvement of car components dismantling speed and the substitution of non recyclable material. Finally, during the last year, innovative plants and technologies for metals recovery from car fluff have been visited and tested worldwide in order to design a new car fluff treatment plant aimed at ASR energy and material recovery.
Resumo:
Fibre-Reinforced-Plastics are composite materials composed by thin fibres with high mechanical properties, made to work together with a cohesive plastic matrix. The huge advantages of fibre reinforced plastics over traditional materials are their high specific mechanical properties i.e. high stiffness and strength to weight ratios. This kind of composite materials is the most disruptive innovation in the structural materials field seen in recent years and the areas of potential application are still many. However, there are few aspects which limit their growth: on the one hand the information available about their properties and long term behaviour is still scarce, especially if compared with traditional materials for which there has been developed an extended database through years of use and research. On the other hand, the technologies of production are still not as developed as the ones available to form plastics, metals and other traditional materials. A third aspect is that the new properties presented by these materials e.g. their anisotropy, difficult the design of components. This thesis will provide several case-studies with advancements regarding the three limitations mentioned. In particular, the long term mechanical properties have been studied through an experimental analysis of the impact of seawater on GFRP. Regarding production methods, the pre-impregnated cured in autoclave process was considered: a rapid tooling method to produce moulds will be presented, and a study about the production of thick components. Also, two liquid composite moulding methods will be presented, with a case-study regarding a large component with sandwich structure that was produced with the Vacuum-Assisted-Resin-Infusion method, and a case-study regarding a thick con-rod beam that was produced with the Resin-Transfer-Moulding process. The final case-study will analyse the loads acting during the use of a particular sportive component, made with FRP layers and a sandwich structure, practical design rules will be provided.
Resumo:
Green roof mitigation of volume and peak flow-rate of stormwater runoff has been studied extensively. However, due to the common practice of green roof fertilization, there is the potential for introduction of nutrients into local bodies of water. Therefore, this study compares green roof runoff quality with the water quality of precipitation and runoff from a bare shingle roof. The runoff from a demonstration-scale extensive green roof was analyzed during the summer of 2011 for its effect on runoff volume and analyzed during eleven storm events in the fall and winter for concentrations of copper, cadmium, zinc, lead, nitrogen species, total nitrogen, total organic carbon, sulfate, orthophosphate, and other monovalent and divalent ions. The green roof reduced the overall volume of runoff and served as a sink for NO3 - and NH4 +. However, the green roof was also a source for the pollutants PO4 3-, SO4 2-, TOC, cations, and total nitrogen. Metals such as zinc and lead showed trends of higher mass loads in the bare roof runoff than in precipitation and green roof runoff, although results were not statistically significant. The green roof also showed trends, although also not statistically significant, of retaining cadmium and copper. With the green roof serving as a source of phosphorous species and a sink for nitrogen species, and appearing to a retain metals and total volume, the life cycle impact analysis shows minimum impacts from the green roof, when compared with precipitation and bare roof runoff, in all but fresh water eutrophication. Therefore, the best environments to install a green roof may be in coastal environments.
Resumo:
The Continental porphyry Cu‐Mo mine, located 2 km east of the famous Berkeley Pit lake of Butte, Montana, contains two small lakes that vary in size depending on mining activity. In contrast to the acidic Berkeley Pit lake, the Continental Pit waters have near-neutral pH and relatively low metal concentrations. The main reason is geological: whereas the Berkeley Pit mined highly‐altered granite rich in pyrite with no neutralizing potential, the Continental Pit is mining weakly‐altered granite with lower pyrite concentrations and up to 1‐2% hydrothermal calcite. The purpose of this study was to gather and interpret information that bears on the chemistry of surface water and groundwater in the active Continental Pit. Pre‐existing chemistry data from sampling of the Continental Pit were compiled from the Montana Bureau of Mines and Geology and Montana Department of Environmental Quality records. In addition, in March of 2013, new water samples were collected from the mine’s main dewatering well, the Sarsfield well, and a nearby acidic seep (Pavilion Seep) and analyzed for trace metals and several stable isotopes, including dD and d18O of water, d13C of dissolved inorganic carbon, and d34S of dissolved sulfate. In December 2013, several soil samples were collected from the shore of the frozen pit lake and surrounding area. The soil samples were analyzed using X‐ray diffraction to determine mineral content. Based on Visual Minteq modeling, water in the Continental Pit lake is near equilibrium with a number of carbonate, sulfate, and molybdate minerals, including calcite, dolomite, rhodochrosite (MnCO3), brochantite (CuSO4·3Cu(OH)2), malachite (Cu2CO3(OH)2), hydrozincite (Zn5(CO3)2(OH)6), gypsum, and powellite (CaMoO4). The fact that these minerals are close to equilibrium suggests that they are present on the weathered mine walls and/or in the sediment of the surface water ponds. X‐Ray Diffraction (XRD) analysis of the pond “beach” sample failed to show any discrete metal‐bearing phases. One of the soil samples collected higher in the mine, near an area of active weathering of chalcocite‐rich ore, contained over 50% chalcanthite (CuSO4·5H2O). This water‐soluble copper salt is easily dissolved in water, and is probably a major source of copper to the pond and underlying groundwater system. However, concentrations of copper in the latter are probably controlled by other, less‐soluble minerals, such as brochantite or malachite. Although the acidity of the Pavilion Seep is high (~ 11 meq/L), the flow is much less than the Sarsfield Well at the current time. Thus, the pH, major and minor element chemistry in the Continental Pit lakes are buffered by calcite and other carbonate minerals. For the Continental Pit waters to become acidic, the influx of acidic seepage (e.g., Pavilion Seep) would need to increase substantially over its present volume.