995 resultados para metabolic engineering
Resumo:
Forty-eight measurements of energy expenditure were performed in 15 very low-birth-weight infants during the first 6 wk of life. Their mean birth weight and gestation age was 1223 g and 31 wk respectively. Their mean weight gain was 11.2 g/kg . d (range: -6.6 to +15.9 g/kg . d.). The mean energy expenditure increased from 170 kJ/kg . d (wk 1) to 252 kJ/kg . d (wk 6). There was a significant relationship between weight gain and energy expenditure (r = 0.58, P less than 0.001) and also between the net increase in body weight gain and the net increase in energy expenditure (r = 0.80, P less than 0.001). From the slopes of these regression lines, the metabolic cost of growth was found to be approximately 2.3 kJ/g of weight gain. Carbohydrate oxidation represented 80% of energy expenditure at the second wk and decreased to 65% the 6th wk, whereas lipid oxidation during the same period increased from 14 to 30% and the relative protein oxidation remained unchanged, covering 5-6% of the energy expended.
Resumo:
Rapport de synthèse : Les maladies cardio-vasculaires constituent les causes principales causes de morbidité et de mortalité dans les pays industrialisés. Des études épidémiologiques ont démontré l'implication de facteurs de risques comme l'hypertension, l'hypercholestérolémie, l'obésité abdominale, le diabète et le tabagisme dans le développement des affections cardiovasculaires comme l'infarctus du myocarde ou l'accident vasculaire cérébral. De larges études génétiques cas-contrôle ont contribué modestement à l'identification de gènes de susceptibilité au développement de ces FRCV. Une étude populationnelle offre par contre l'avantage d'effectuer des études associatives pour des traits phénotypiques continus correctement mesurés et aussi pour des traits de catégories utilisant des protocoles d'étude cas-contrôle très discordants. ~ Elle permet l'exploration des déterminants génétiques comme par exemple le syndrome métabolique. Cette approche permet également de procéder à des analyses de séquençage sur l'ADN des participants chez qui un trait phénotypique spécifique est étudié mais distribué de manière opposée. A titre d'exemple, le séquençage de l'ADN de participants à taux très élevé d'HDL-cholestérol versus très bas de ce marqueur lipidique permet d'identifier des variants génétiques rares localisés sur les parties codantes de gènes spécifiques associés aux dyslipidémies. Pour ce faire, nous avons recruté 6'188 personnes âgées de 35 à 75 ans, d'origine caucasienne et résidant en ville de Lausanne (3251 femmes et 2937 hommes). L'obtention d'un tel collectif a nécessité l'échantillonnage aléatoire de quelque 19'830 personnes de cette tranche d'âge. Les participants ont fait l'objet d'une anamnèse approfondie et d'un examen clinique. Le bilan était complété par une prise de sang pour le dosage de paramètres biologiques ainsi qu'une analyse .génétique. Cette dernière a été effectuée après extraction d'ADN au moyen d'une puce Affimetrix qui évalue la présence de quelques 500'000 SNPs. Les données récoltées lors de cette étude dévoilent que l'obésité (index de masse corporelle > 30 kg/m2), le tabagisme, l'hypertension (pression artérielle >_ 140/90 mmHg et/ou hypertension traitée), une dyslipidémie (LDL cholestérol élevé et/ou HDL cholestérol bas et/ou triglycéride élevé) et le diabète (glucose à jeun >_ 7 mmol/l et/ou traitement) affectent respectivement 947 (15,7%), 1673 (27%), 2268 (36,7%), 2113 (34,2%) et 407 (6,6%) participants. La prévalence de ces FRCV est plus marquée chez les hommes que chez les femmes. Dans les deux genres les prévalences de l'obésité, de l'hypertension et du diabète augmentent drastiquement avec l'âge. En conclusion la prévalence des FRCV est élevée au sein d'une population représentative de Lausanne âgée de 35 à 75 ans. A l'avenir, l'étude CoLaus constituera par la richesse de ses données phénotypiques et génétiques, une source unique pour investiguer l'épidémiologie et l'identification de gènes associés à ces FRCV.
Resumo:
Today, information technology is strategically important to the goals and aspirations of the business enterprises, government and high-level education institutions – university. Universities are facing new challenges with the emerging global economy characterized by the importance of providing faster communication services and improving the productivity and effectiveness of individuals. New challenges such as provides an information network that supports the demands and diversification of university issues. A new network architecture, which is a set of design principles for build a network, is one of the pillar bases. It is the cornerstone that enables the university’s faculty, researchers, students, administrators, and staff to discover, learn, reach out, and serve society. This thesis focuses on the network architecture definitions and fundamental components. Three most important characteristics of high-quality architecture are that: it’s open network architecture; it’s service-oriented characteristics and is an IP network based on packets. There are four important components in the architecture, which are: Services and Network Management, Network Control, Core Switching and Edge Access. The theoretical contribution of this study is a reference model Architecture of University Campus Network that can be followed or adapted to build a robust yet flexible network that respond next generation requirements. The results found are relevant to provide an important complete reference guide to the process of building campus network which nowadays play a very important role. Respectively, the research gives university networks a structured modular model that is reliable, robust and can easily grow.
Resumo:
While virtually absent in our diet a few hundred years ago, fructose has now become a major constituent of our modern diet. Our main sources of fructose are sucrose from beet or cane, high fructose corn syrup, fruits, and honey. Fructose has the same chemical formula as glucose (C(6)H(12)O(6)), but its metabolism differs markedly from that of glucose due to its almost complete hepatic extraction and rapid hepatic conversion into glucose, glycogen, lactate, and fat. Fructose was initially thought to be advisable for patients with diabetes due to its low glycemic index. However, chronically high consumption of fructose in rodents leads to hepatic and extrahepatic insulin resistance, obesity, type 2 diabetes mellitus, and high blood pressure. The evidence is less compelling in humans, but high fructose intake has indeed been shown to cause dyslipidemia and to impair hepatic insulin sensitivity. Hepatic de novo lipogenesis and lipotoxicity, oxidative stress, and hyperuricemia have all been proposed as mechanisms responsible for these adverse metabolic effects of fructose. Although there is compelling evidence that very high fructose intake can have deleterious metabolic effects in humans as in rodents, the role of fructose in the development of the current epidemic of metabolic disorders remains controversial. Epidemiological studies show growing evidence that consumption of sweetened beverages (containing either sucrose or a mixture of glucose and fructose) is associated with a high energy intake, increased body weight, and the occurrence of metabolic and cardiovascular disorders. There is, however, no unequivocal evidence that fructose intake at moderate doses is directly related with adverse metabolic effects. There has also been much concern that consumption of free fructose, as provided in high fructose corn syrup, may cause more adverse effects than consumption of fructose consumed with sucrose. There is, however, no direct evidence for more serious metabolic consequences of high fructose corn syrup versus sucrose consumption.
Resumo:
The resting metabolic rate (RMR) and body composition of 130 obese and nonobese prepubertal children, aged 6 to 10 years, were assessed by indirect calorimetry and skin-fold thickness, respectively. The mean (+/- SD) RMR was 4619 +/- 449 kJ.day-1 (164 +/- 31 kJ.kg body weight-1 x day-1) in the 62 boys and 4449 +/- 520 kJ.day-1 (147 +/- 32 kJ.kg body weight-1 x day-1) in the 68 girls. Fat-free mass was the best single predictor of RMR (R2 = 0.64; p < 0.001). Step-down multiple regression analysis, with independent variables such as age, gender, weight, and height, allowed several RMR predictive equations to be developed. An equation for boys is as follows: RMR (kJ.day-1) = 1287 + 28.6 x Weight(kg) + 23.6 x Height(cm) - 69.1 x Age(yr) (R2 = 0.58; p < 0.001). An equation for girls is as follows: RMR (kJ.day-1 = 1552 + 35.8 x Weight (kg) + 15.6 x Height (cm) - 36.3 x Age (yr) (R2 = 0.69; p < 0.001). Comparison between the measured RMR and that predicted by currently used formulas showed that most of these equations tended to overestimate the RMR of both genders, especially in overweight children.
Resumo:
AIM: Intensified insulin therapy has evolved to be the standard treatment of type 1 diabetes. However, it has been reported to increase significantly the risk of hypoglycaemia. We studied the effect of structured group teaching courses in flexible insulin therapy (FIT) on psychological and metabolic parameters in patients with type 1 diabetes. METHODS: We prospectively followed 45 type 1 diabetic patients of our outpatient clinic participating in 5 consecutive FIT teaching courses at the University Hospital of Basel. These courses consist of 7 weekly ambulatory evening group sessions. Patients were studied before and 1, 6, and 18 months after the course. Main outcome measures were glycated haemoglobin (HbA1c), severe hypoglycaemic events, quality of life (DQoL), diabetes self-control (IPC-9) and diabetes knowledge (DWT). RESULTS: Quality of life, self-control and diabetes knowledge improved after the FIT courses (all p<0.001). The frequency of severe hypoglycaemic events decreased ten-fold from 0.33 episodes/6 months at baseline to 0.03 episodes/6 months after 18 months (p<0.05). Baseline HbA1c was 7.2+/-1.1% and decreased in the subgroup with HbA1c > or = 8% from 8.4% to 7.8% (p<0.05). CONCLUSIONS: In an unselected, but relatively well-controlled population of type 1 diabetes, a structured, but not very time consuming FIT teaching programme in the outpatient setting improves psychological well-being and metabolic parameters.
Resumo:
The jointly voluntary and involuntary control of respiration, unique among essential physiological processes, the interconnection of breathing with and its influence on the autonomic nervous system, and disease states associated with the interface between psychology and respiration (e.g., anxiety disorders, hyperventilation syndrome, asthma) make the study of the relationship between respiration and emotion both theoretically and clinically of great relevance. However, the respiratory behavior during affective states is not yet completely understood. We studied breathing pattern responses to 13 picture series varying widely in their affective tone in 37 adults (18 men, 19 women, mean age 26). Time and volume parameters were recorded with the LifeShirt system (VivoMetrics Inc., Ventura, California, USA, see image). We also measured end-tidal pCO2 (EtCO2) with a Microcap Handheld Capnograph (Oridion Medical 1987 Ltd., Jerusalem, Israel) to determine if ventilation is in balance with metabolic demands and spontaneous eye-blinking to investigate the link between respiration and attention. At the end of each picture series, the participants reported their subjective feeling in the affective dimensions of pleasantness and arousal. Increasing self-rated arousal was associated with increasing minute ventilation but not with decreases in EtCO2, suggesting that ventilatory changes during picture viewing paralleled variations in metabolic activity. EtCO2 correlated with pleasantness, and eye-blink rate decreased with increasing unpleasantness in line with a negativity bias in attention. Like MV, inspiratory drive (i.e., mean inspiratory flow) increased with arousal. This relationship reflected increases in inspiratory volume rather than shortening of the time parameters. This study confirms that respiratory responses to affective stimuli are organized to a certain degree along the dimensions of pleasantness and arousal. It shows, for the first time, that during picture viewing, ventilatory increases with increasing arousal are in balance with metabolic activity and that inspiratory volume is modulated by arousal. MV emerges as the most reliable respiratory index of self-perceived arousal. Finally, end-tidal pCO2 is slightly lower during processing of negative as compared to positive picture contents, which is proposed to enhance sensory perception and reflect a negativity bias in attention.
Resumo:
The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1 (+/-) mice developed normally. However, when fed high fat diet (HFD), MCT1 (+/-) mice displayed resistance to development of diet-induced obesity (24.8% lower body weight after 16 weeks of HFD), as well as less insulin resistance and no hepatic steatosis as compared to littermate MCT1 (+/+) mice used as controls. Body composition analysis revealed that reduced weight gain in MCT1 (+/-) mice was due to decreased fat accumulation (50.0% less after 9 months of HFD) notably in liver and white adipose tissue. This phenotype was associated with reduced food intake under HFD (12.3% less over 10 weeks) and decreased intestinal energy absorption (9.6% higher stool energy content). Indirect calorimetry measurements showed ∼ 15% increase in O2 consumption and CO2 production during the resting phase, without any changes in physical activity. Determination of plasma concentrations for various metabolites and hormones did not reveal significant changes in lactate and ketone bodies levels between the two genotypes, but both insulin and leptin levels, which were elevated in MCT1 (+/+) mice when fed HFD, were reduced in MCT1 (+/-) mice under HFD. Interestingly, the enhancement in expression of several genes involved in lipid metabolism in the liver of MCT1 (+/+) mice under high fat diet was prevented in the liver of MCT1 (+/-) mice under the same diet, thus likely contributing to the observed phenotype. These findings uncover the critical role of MCT1 in the regulation of energy balance when animals are exposed to an obesogenic diet.
Resumo:
Report on a special investigation of the Engineering Communications and Marketing Department (ECM) of Iowa State University of Science and Technology for the period January 1, 2003 through December 31, 2007
Resumo:
We study the impact of university-industry research collaborations on academicoutput, in terms of productivity and direction of research. We report findings froma longitudinal dataset on all the researchers from the engineering departments inthe UK in the last 20 years. We control for the endogeneity caused by the dynamicnature of research and the existence of reverse causality. Our results indicate thatresearchers with industrial links publish significantly more. Productivity, though,is higher for low levels of industry involvement. Moreover, growing ties with theindustry skew research towards a more applied approach.
Resumo:
Recent years have seen a surge in mathematical modeling of the various aspects of neuron-astrocyte interactions, and the field of brain energy metabolism is no exception in that regard. Despite the advent of biophysical models in the field, the long-lasting debate on the role of lactate in brain energy metabolism is still unresolved. Quite the contrary, it has been ported to the world of differential equations. Here, we summarize the present state of this discussion from the modeler's point of view and bring some crucial points to the attention of the non-mathematically proficient reader.
Resumo:
Supernatants from cell cultures (also called conditioned media, CMs) are commonly analyzed to study the pool of secreted proteins (secretome). To reduce the exogenous protein background, serum-free media are often used to obtain CMs. Serum deprivation, however, can severely affect cell viability and phenotype, including protein secretion. We present a strategy to analyze the proteins secreted by cells in fetal bovine serum-containing CMs, which combines the advantage of metabolic labeling and protein concentration linearization techniques. Incubation of CMs with a hexapeptide ligand library was used to reduce the dynamic range of the samples and led to the identification of 3 times more proteins than in untreated CM samples. Labeling with a deuterated amino acid was used to distinguish between cellular proteins and homologous bovine proteins contained in the medium. Application of the strategy to two breast cancer cell lines led to the identification of proteins secreted in different amounts and which could correlate with their varying degree of aggressiveness. Selected reaction monitoring (SRM)-based quantitation of three proteins of interest in the crude samples yielded data in good agreement with the results from concentration-equalized samples.
Resumo:
The aim of the study was to measure the energy used for growth of healthy fullterm and breast-fed Gambian infants. The weight gain (WG) of 14 infants (mean age +/- SEM 17 +/- 1 d, weight 3.581 +/- 0.105 kg) was measured over a 2-week period; the energy intake (EI) from breast milk was assessed for 24 h in the middle of the study period by weighing the infant before and after each breast-feed. On the same day, sleeping energy expenditure (SEE) and respiratory quotient (RQ) were measured for 30 min on five occasions through the 24-h period. EI averaged 502 +/- 25 kJ/kg.d, and SEE 230 +/- 6 kJ/kg.d; thus, an average of 272 kJ/kg.d were available for physical activity and the energy stored for growth. The total energy spent by infants while sleeping and for periods of physical activity was calculated to be 1.7 x SEE. The mean RQ measured on five occasions averaged 0.879 +/- 0.009. SEE was correlated with WG (r = 0.747, P less than 0.005), with a slope of the regression line of 5.5 kJ/g; this value can be considered as an estimate of the energy spent for new tissue synthesis in the resting infant. The efficiency of weight gain was lower in this study (67%) than in studies conducted on fast-growing preterm infants or children recovering from malnutrition.
Resumo:
The objective of this experiment was to quantify the extramatrical mycelium of the arbuscular mycorrhizal (AM) fungus Glomus etunicatum (Becker & Gerdemann) grown on maize (Zea mays L. var. Piranão) provided with various levels of phosphate fertilizer and harvested at 30, 60 and 90 days after planting (DAP). Total extramatrical mycelium (TEM) was extracted from soil using a modified membrane filtration method, followed by quantification using a grid intersection technique. Active extramatrical mycelium (AEM) proportion was determined using an enzymatic method which measured dehydrogenase activity by following iodonitrotetrazolium reduction. At low levels of added P, there was relatively less TEM than at high levels of added P, but the AEM proportion at low soil P availability was significantly greater than at high soil P.
Resumo:
Diabetes and the related metabolic syndrome are multi system disorders that result from improper interactions between various cell types. Even though the underlying mechanism remains to be fully understood, it is most likely that both the long and the short distance range cell interactions, which normally ensure the physiologic functioning of the pancreas, and its relationships with the insulin-targeted organs, are altered. This review focuses on the short-range type of interactions that depend on the contact between adjacent cells and, specifically, on the interactions that are dependent on connexins. The widespread distribution of these membrane proteins, their multiple modes of action, and their interactions with conditions/molecules associated to both the pathogenesis and the treatment of the 2 main forms of diabetes and the metabolic syndrome, make connexins an essential part of the chain of events that leads to metabolic diseases. Here, we review the present state of knowledge about the molecular and cell biology of the connexin genes and proteins, their general mechanisms of action, the roles specific connexin species play in the endocrine pancreas and the major insulin-targeted organs, under physiological and patho-physiological conditions.