750 resultados para mechanical stiffness
Resumo:
The aim of this thesis was to produce information for the estimation of the flow balance of wood resin in mechanical pulping and to demonstrate the possibilities for improving the efficiency of deresination in practice. It was observed that chemical changes in wood resin take place only during peroxide bleaching, a significant amount of water dispersed wood resin is retained in the pulp mat during dewatering and the amount of wood resin in the solid phase of the process filtrates is very small. On the basis of this information there exist three parameters related to behaviour of wood resin that determine the flow balance in the process: 1. The liberation of wood resin to the pulp water phase 2. Theretention of water dispersed wood resin in dewatering 3. The proportion of wood resin degraded in the peroxide bleaching The effect of different factors on these parameters was evaluated with the help of laboratory studies and a literature survey. Also, information related to the values of these parameters in existing processes was obtained in mill measurements. With the help of this information, it was possible to evaluate the deresination efficiency and the effect of different factors on this efficiency in a pulping plant that produced low-freeness mechanical pulp. This evaluation showed that the wood resin content of mechanical pulp can be significantly decreased if there exists, in the process, a peroxide bleaching and subsequent washing stage. In the case of an optimal process configuration, as high as a 85 percent deresination efficiency seems to be possible with a water usage level of 8 m3/o.d.t.
Resumo:
Theultimate goal of any research in the mechanism/kinematic/design area may be called predictive design, ie the optimisation of mechanism proportions in the design stage without requiring extensive life and wear testing. This is an ambitious goal and can be realised through development and refinement of numerical (computational) technology in order to facilitate the design analysis and optimisation of complex mechanisms, mechanical components and systems. As a part of the systematic design methodology this thesis concentrates on kinematic synthesis (kinematic design and analysis) methods in the mechanism synthesis process. The main task of kinematic design is to find all possible solutions in the form of structural parameters to accomplish the desired requirements of motion. Main formulations of kinematic design can be broadly divided to exact synthesis and approximate synthesis formulations. The exact synthesis formulation is based in solving n linear or nonlinear equations in n variables and the solutions for the problem areget by adopting closed form classical or modern algebraic solution methods or using numerical solution methods based on the polynomial continuation or homotopy. The approximate synthesis formulations is based on minimising the approximation error by direct optimisation The main drawbacks of exact synthesis formulationare: (ia) limitations of number of design specifications and (iia) failure in handling design constraints- especially inequality constraints. The main drawbacks of approximate synthesis formulations are: (ib) it is difficult to choose a proper initial linkage and (iib) it is hard to find more than one solution. Recentformulations in solving the approximate synthesis problem adopts polynomial continuation providing several solutions, but it can not handle inequality const-raints. Based on the practical design needs the mixed exact-approximate position synthesis with two exact and an unlimited number of approximate positions has also been developed. The solutions space is presented as a ground pivot map but thepole between the exact positions cannot be selected as a ground pivot. In this thesis the exact synthesis problem of planar mechanism is solved by generating all possible solutions for the optimisation process ¿ including solutions in positive dimensional solution sets - within inequality constraints of structural parameters. Through the literature research it is first shown that the algebraic and numerical solution methods ¿ used in the research area of computational kinematics ¿ are capable of solving non-parametric algebraic systems of n equations inn variables and cannot handle the singularities associated with positive-dimensional solution sets. In this thesis the problem of positive-dimensional solutionsets is solved adopting the main principles from mathematical research area of algebraic geometry in solving parametric ( in the mathematical sense that all parameter values are considered ¿ including the degenerate cases ¿ for which the system is solvable ) algebraic systems of n equations and at least n+1 variables.Adopting the developed solution method in solving the dyadic equations in direct polynomial form in two- to three-precision-points it has been algebraically proved and numerically demonstrated that the map of the ground pivots is ambiguousand that the singularities associated with positive-dimensional solution sets can be solved. The positive-dimensional solution sets associated with the poles might contain physically meaningful solutions in the form of optimal defectfree mechanisms. Traditionally the mechanism optimisation of hydraulically driven boommechanisms is done at early state of the design process. This will result in optimal component design rather than optimal system level design. Modern mechanismoptimisation at system level demands integration of kinematic design methods with mechanical system simulation techniques. In this thesis a new kinematic design method for hydraulically driven boom mechanism is developed and integrated in mechanical system simulation techniques. The developed kinematic design method is based on the combinations of two-precision-point formulation and on optimisation ( with mathematical programming techniques or adopting optimisation methods based on probability and statistics ) of substructures using calculated criteria from the system level response of multidegree-of-freedom mechanisms. Eg. by adopting the mixed exact-approximate position synthesis in direct optimisation (using mathematical programming techniques) with two exact positions and an unlimitednumber of approximate positions the drawbacks of (ia)-(iib) has been cancelled.The design principles of the developed method are based on the design-tree -approach of the mechanical systems and the design method ¿ in principle ¿ is capable of capturing the interrelationship between kinematic and dynamic synthesis simultaneously when the developed kinematic design method is integrated with the mechanical system simulation techniques.
Resumo:
The future of high technology welded constructions will be characterised by higher strength materials and improved weld quality with respect to fatigue resistance. The expected implementation of high quality high strength steel welds will require that more attention be given to the issues of crack initiation and mechanical mismatching. Experiments and finite element analyses were performed within the framework of continuum damage mechanics to investigate the effect of mismatching of welded joints on void nucleation and coalescence during monotonic loading. It was found that the damage of undermatched joints mainly occurred in the sandwich layer and the damageresistance of the joints decreases with the decrease of the sandwich layer width. The damage of over-matched joints mainly occurred in the base metal adjacent to the sandwich layer and the damage resistance of the joints increases with thedecrease of the sandwich layer width. The mechanisms of the initiation of the micro voids/cracks were found to be cracking of the inclusions or the embrittled second phase, and the debonding of the inclusions from the matrix. Experimental fatigue crack growth rate testing showed that the fatigue life of under-matched central crack panel specimens is longer than that of over-matched and even-matched specimens. Further investigation by the elastic-plastic finite element analysis indicated that fatigue crack closure, which originated from the inhomogeneousyielding adjacent to the crack tip, played an important role in the fatigue crack propagation. The applicability of the J integral concept to the mismatched specimens with crack extension under cyclic loading was assessed. The concept of fatigue class used by the International Institute of Welding was introduced in the parametric numerical analysis of several welded joints. The effect of weld geometry and load condition on fatigue strength of ferrite-pearlite steel joints was systematically evaluated based on linear elastic fracture mechanics. Joint types included lap joints, angle joints and butt joints. Various combinations of the tensile and bending loads were considered during the evaluation with the emphasis focused on the existence of both root and toe cracks. For a lap joint with asmall lack-of-penetration, a reasonably large weld leg and smaller flank angle were recommended for engineering practice in order to achieve higher fatigue strength. It was found that the fatigue strength of the angle joint depended strongly on the location and orientation of the preexisting crack-like welding defects, even if the joint was welded with full penetration. It is commonly believed that the double sided butt welds can have significantly higher fatigue strength than that of a single sided welds, but fatigue crack initiation and propagation can originate from the weld root if the welding procedure results in a partial penetration. It is clearly shown that the fatigue strength of the butt joint could be improved remarkably by ensuring full penetration. Nevertheless, increasing the fatigue strength of a butt joint by increasing the size of the weld is an uneconomical alternative.
Resumo:
BACKGROUND: Chronic kidney disease (CKD) accelerates vascular stiffening related to age. Arterial stiffness may be evaluated measuring the carotid-femoral pulse wave velocity (PWV) or more simply, as recommended by KDOQI, monitoring pulse pressure (PP). Both correlate to survival and incidence of cardiovascular disease. PWV can also be estimated on the brachial artery using a Mobil-O-Graph; a non-operator dependent automatic device. The aim was to analyse whether, in a dialysis population, PWV obtained by Mobil-O-Graph (MogPWV) is more sensitive for vascular aging than PP. METHODS: A cohort of 143 patients from 4 dialysis units has been followed measuring MogPWV and PP every 3 to 6 months and compared to a control group with the same risk factors but an eGFR > 30 ml/min. RESULTS: MogPWV contrarily to PP did discriminate the dialysis population from the control group. The mean difference translated in age between the two populations was 8.4 years. The increase in MogPWV, as a function of age, was more rapid in the dialysis group. 13.3% of the dialysis patients but only 3.0% of the control group were outliers for MogPWV. The mortality rate (16 out of 143) was similar in outliers and inliers (7.4 and 8.0%/year). Stratifying patients according to MogPWV, a significant difference in survival was seen. A high parathormone (PTH) and to be dialysed for a hypertensive nephropathy were associated to a higher baseline MogPWV. CONCLUSIONS: Assessing PWV on the brachial artery using a Mobil-O-Graph is a valid and simple alternative, which, in the dialysis population, is more sensitive for vascular aging than PP. As demonstrated in previous studies PWV correlates to mortality. Among specific CKD risk factors only PTH is associated with a higher baseline PWV. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02327962.
Resumo:
A variable temperature field sets exacting demands to the structure under mechanical load. Most of all the lifetime of the rotating drum structure depends on temperature differences between parts inside the drum. The temperature difference was known because of the measurements made before. The list of demands was created based on customers’ needs. The limits of this paper were set to the inner structure of the drum. Creation of ideas for the inner structure was started open minded. The main principle in the creation process was to create new ideas for the function of the product with the help of sub-functions. The sub-functions were created as independent as possible. The best sub-functions were combined together and the new working principles were created based on them. Every working principle was calculated separately and criticized at the end of the calculation process. The main objective was to create the new kind of structure, which is not based too much to the old, inoperative structure. The affect of own weight of the inner structure to the stress values was quite small but it was also taken into consideration when calculating the maximum stress value of the structure. Because of very complex structures all of the calculations were made with the help of the ProE – Mechanica software. The fatigue analyze was made also for the best structure solution.
Resumo:
ABSTRACT Dual-trap optical tweezers are often used in high-resolution measurements in single-molecule biophysics. Such measurements can be hindered by the presence of extraneous noise sources, the most prominent of which is the coupling of fluctuations along different spatial directions, which may affect any optical tweezers setup. In this article, we analyze, both from the theoretical and the experimental points of view, the most common source for these couplings in dual-trap optical-tweezers setups: the misalignment of traps and tether. We give criteria to distinguish different kinds of misalignment, to estimate their quantitative relevance and to include them in the data analysis. The experimental data is obtained in a, to our knowledge, novel dual-trap optical-tweezers setup that directly measures forces. In the case in which misalignment is negligible, we provide a method to measure the stiffness of traps and tether based on variance analysis. This method can be seen as a calibration technique valid beyond the linear trap region. Our analysis is then employed to measure the persistence length of dsDNA tethers of three different lengths spanning two orders of magnitude. The effective persistence length of such tethers is shown to decrease with the contour length, in accordance with previous studies.
Inactive Matrix Gla-Protein is associated with arterial stiffness in an adult population-based study
Resumo:
Increased pulse wave velocity (PWV) is a marker of aortic stiffness and an independent predictor of mortality. Matrix Gla-protein (MGP) is a vascular calcification inhibitor that needs vitamin K to be activated. Inactive MGP, known as desphospho-uncarboxylated MGP (dp-ucMGP), can be measured in plasma and has been associated with various cardiovascular markers, cardiovascular outcomes, and mortality. In this study, we hypothesized that high levels of dp-ucMGP are associated with increased PWV. We recruited participants via a multicenter family-based cross-sectional study in Switzerland. Dp-ucMGP was quantified in plasma by sandwich ELISA. Aortic PWV was determined by applanation tonometry using carotid and femoral pulse waveforms. Multiple regression analysis was performed to estimate associations between PWV and dp-ucMGP adjusting for age, renal function, and other cardiovascular risk factors. We included 1001 participants in our analyses (475 men and 526 women). Mean values were 7.87±2.10 m/s for PWV and 0.43±0.20 nmol/L for dp-ucMGP. PWV was positively associated with dp-ucMGP both before and after adjustment for sex, age, body mass index, height, systolic and diastolic blood pressure (BP), heart rate, renal function, low- and high-density lipoprotein, glucose, smoking status, diabetes mellitus, BP and cholesterol lowering drugs, and history of cardiovascular disease (P≤0.01). In conclusion, high levels of dp-ucMGP are independently and positively associated with arterial stiffness after adjustment for common cardiovascular risk factors, renal function, and age. Experimental studies are needed to determine whether vitamin K supplementation slows arterial stiffening by increasing MGP carboxylation.
Resumo:
Tämän tutkimuksen ensisijaisena tavoitteena oli määrittää Schauman Wood Oy:n ostoprosessin suorituskyvyn nykytila yrityksen Suomen yksiköissä. Nykytila-arviointi suoritettiin uusien ja käytössä olevien mittaustulosten avulla. Tutkimuksessa verrattiin kymmenen tuotantolaitoksen ostoprosesseja keskenään. Keskeinen tutkimusongelma oli ostoprosessin suorituseroja aikaansaavien tekijöiden selvittäminen eri yksiköissä. Tutkimuksen tavoitteena oli saavuttaa yhtenäisemmät toimintatavat yrityksessä sekä laajentaa konsernin osto-organisaation hyödyntämistä hankintatoimessa. Tavoitteena oli ostoprosessin virtaviivaistaminen ja tehokkaamman seurantajärjestelmän kehittäminen. Ostotoimintojen suorituskyvyn jatkuva parantaminen perustuu osittain uusien mittareiden avulla saatavaan informaatioon ja täsmällisempään seurantaan. Sisäistä benchmarkingia käytettiin työkaluna suorituskyky-eroavaisuuksien määrittelyssä. Tietoa erilaisista toimintatavoista kerättiin haastattelemalla yrityksen ostajia ja tehdaspalvelupäälliköitä eri tehdaspaikkakunnilla. Sisäisen benchmarkingin avulla määriteltiin toimintatapa eroavaisuudet sekä kehitettiin seurantakortti, jossa jokaista yksikköä verrataan parhaaseen ja eniten kehittyneeseen yksikköön. Työn tuloksina muodostui ehdotuksia ostotoiminnon uusiksi mittareiksi. Uudet mittarit ovat tehokkuusmittareita, jotka kuvaavat resurssien käytön tehokkuutta sekä auttavat seuraamaan ostoprosessin tilaa entistä paremmin. Uusien mittareiden tavoitteena on myös vähentää mittareiden manipulaatiomahdollisuutta. Työn ulkopuolelle rajattiin informaatioteknologiajärjestelmien tietotekninen osuus. Eräs yrityksen tuotantolaitoksista rajattiin myös työn ulkopuolelle, koska sen ostoprosessit ovat huomattavasti kehittymättömämpiä kuin Schauman Woodin muiden tehtaiden ostoprosessit. Kyseisen yksikön kehittämisen tulee lähteä aivan ruohonjuuritasolta. Tutkimuksen teoriaosuus on kerätty alan ammattikirjallisuudesta ja tutkimuksen aihetta käsittelevistä uudehkoista tieteellisistä alan artikkeleista. Teorian tarkoituksena on tukea empiiristä osuutta sekä antaa lukijalle uusia näkemyksiä ostotoiminnan monista mahdollisuuksista. Tutkimuksen tuloksia ovat nykytila-analyysi, ehdotukset uusista ostotoiminnan mittareista sekä ehdotus MRO-tuotteiden ulkoistamiskokeilusta. Yrityksen ostotoiminnan tulisi kehittyä operatiivisesta tasosta kohti strategisempaa oston tasoa. Johdon sitoutuminen hankintatoimen kehityshankkeisiin on erityisen tärkeää, lisäksi hankintatoimi tulisi nähdä strategisempana osa-alueena yrityksessä. Hankintatoimen kehittämisen avulla yrityksen kustannustehokkuutta voidaan lisätä merkittävästi.
Resumo:
AIM: The aim of our study was to compare traumatic injuries observed after cardiopulmonary resuscitation (CPR) by means of standard (manual) or assisted (mechanical) chest compression by Lund University Cardiopulmonary Assist System, 2nd generation (LUCAS?2) device. METHODS: A retrospective study was conducted including cases from 2011 to 2013, analysing consecutive autopsy reports in two groups of patients who underwent medicolegal autopsy after unsuccessful CPR. We focused on traumatic injuries from dermal to internal trauma, collecting data according to a standardised protocol. RESULTS: The study group was comprised of 26 cases, while 32 cases were included in the control group. Cardiopulmonary resuscitation performed by LUCAS?2 was longer than manual CPR performed in control cases (study group: mean duration 51.5 min; controls 29.4 min; p = 0.004). Anterior chest lesions (from bruises to abrasions) were described in 18/26 patients in the LUCAS?2 group and in 6/32 of the control group. A mean of 6.6 rib fractures per case was observed in the LUCAS?2 group, but this was only 3.1 in the control group (p = 0.007). Rib fractures were less frequently observed in younger patients. The frequency of sternal factures was similar in both groups. A few trauma injuries to internal organs (mainly cardiac, pulmonary and hepatic bruises), and some petechiae (study 46 %; control 41 %; p = 0.79) were recorded in both groups. CONCLUSION: LUCAS?2-CPR is associated with more rib fractures than standard CPR. Typical round concentric skin lesions were observed in cases of mechanical reanimation. No life-threatening injuries were reported. Petechiae were common findings.
Resumo:
To improve our understanding of the limiting factors during repeated sprinting, we manipulated hypoxia severity during an initial set and examined the effects on performance and associated neuro-mechanical alterations during a subsequent set performed in normoxia. On separate days, 13 active males performed eight 5-s sprints (recovery = 25 s) on an instrumented treadmill in either normoxia near sea-level (SL; FiO2 = 20.9%), moderate (MH; FiO2 = 16.8%) or severe normobaric hypoxia (SH; FiO2 = 13.3%) followed, 6 min later, by four 5-s sprints (recovery = 25 s) in normoxia. Throughout the first set, along with distance covered [larger sprint decrement score in SH (-8.2%) compared to SL (-5.3%) and MH (-7.2%); P < 0.05], changes in contact time, step frequency and root mean square activity (surface electromyography) of the quadriceps (Rectus femoris muscle) in SH exceeded those in SL and MH (P < 0.05). During first sprint of the subsequent normoxic set, the distance covered (99.6, 96.4, and 98.3% of sprint 1 in SL, MH, and SH, respectively), the main kinetic (mean vertical, horizontal, and resultant forces) and kinematic (contact time and step frequency) variables as well as surface electromyogram of quadriceps and plantar flexor muscles were fully recovered, with no significant difference between conditions. Despite differing hypoxic severity levels during sprints 1-8, performance and neuro-mechanical patterns did not differ during the four sprints of the second set performed in normoxia. In summary, under the circumstances of this study (participant background, exercise-to-rest ratio, hypoxia exposure), sprint mechanical performance and neural alterations were largely influenced by the hypoxia severity in an initial set of repeated sprints. However, hypoxia had no residual effect during a subsequent set performed in normoxia. Hence, the recovery of performance and associated neuro-mechanical alterations was complete after resting for 6 min near sea level, with a similar fatigue pattern across conditions during subsequent repeated sprints in normoxia.