946 resultados para mathematical modelling of soil erosion
Resumo:
Double-pass counter flow v-grove collector is considered one of the most efficient solar air-collectors. In this design of the collector, the inlet air initially flows at the top part of the collector and changes direction once it reaches the end of the collector and flows below the collector to the outlet. A mathematical model is developed for this type of collector and simulation is carried out using MATLAB programme. The simulation results were verified with three distinguished research results and it was found that the simulation has the ability to predict the performance of the air collector accurately as proven by the comparison of experimental data with simulation. The difference between the predicted and experimental results is, at maximum, approximately 7% which is within the acceptable limit considering some uncertainties in the input parameter values to allow comparison. A parametric study was performed and it was found that solar radiation, inlet air temperature, flow rate and length has a significant effect on the efficiency of the air collector. Additionally, the results are compared with single flow V-groove collector.
Resumo:
This thesis developed semi-parametric regression models for estimating the spatio-temporal distribution of outdoor airborne ultrafine particle number concentration (PNC). The models developed incorporate multivariate penalised splines and random walks and autoregressive errors in order to estimate non-linear functions of space, time and other covariates. The models were applied to data from the "Ultrafine Particles from Traffic Emissions and Child" project in Brisbane, Australia, and to longitudinal measurements of air quality in Helsinki, Finland. The spline and random walk aspects of the models reveal how the daily trend in PNC changes over the year in Helsinki and the similarities and differences in the daily and weekly trends across multiple primary schools in Brisbane. Midday peaks in PNC in Brisbane locations are attributed to new particle formation events at the Port of Brisbane and Brisbane Airport.
Resumo:
This thesis concerns the mathematical model of moving fluid interfaces in a Hele-Shaw cell: an experimental device in which fluid flow is studied by sandwiching the fluid between two closely separated plates. Analytic and numerical methods are developed to gain new insights into interfacial stability and bubble evolution, and the influence of different boundary effects is examined. In particular, the properties of the velocity-dependent kinetic undercooling boundary condition are analysed, with regard to the selection of only discrete possible shapes of travelling fingers of fluid, the formation of corners on the interface, and the interaction of kinetic undercooling with the better known effect of surface tension. Explicit solutions to the problem of an expanding or contracting ring of fluid are also developed.
Resumo:
This study investigated the practices of two teachers in a school that was successful in enabling the mathematical learning of students in Years 1 and 2, including those from backgrounds associated with low mathematical achievement. The study explained how the practices of the teachers constituted a radical visible pedagogy that enabled equitable outcomes. The study also showed that teachers’ practices have collective power to shape students’ mathematical identities. The role of the principal in the school was pivotal because she structured curriculum delivery so that students experienced the distinct practices of both teachers.
Resumo:
The properties of ellipsoidal nanowires are yet to be examined. They have likely applications in sensing, solar cells, microelectronics and cloaking devices. Little is known of the qualities that ellipse nanowires exhibit as we vary the aspect ratio with different dielectric materials and how varying these attributes affects plasmon coupling and propagation. It is known that the distance a plasmon can travel is further if it is supported by a thicker circular nanowire, while thinner nanowires are expected to be able to increase QD coupling. Ellipsoidal nanowires may be a good compromise due to their ability to have both thin and thick dimensions. Furthermore it has been shown that the plasmon resonances along the main axis of an ellipsoidal particle is governed by the relative aspect ratio of the ellipsoid, which may lead to further control of the plasmon. Research was done by the use of COMSOL Multiphysics by looking at the fundamental plasmon mode supported by an ellipsoidal nanowire and then studying this mode for various geometrical parameters, materials and illumination wavelength. Accordingly it was found that ellipsoidal nanowires exhibit a minimum for the wavenumber and a maximum for the propagation distance at roughly the same dimensions - Highlighting that there is an aspect ratio for which there is poor coupling but low loss. Here we investigate these and related attributes.
Resumo:
This paper focuses on a pilot study that explored the situated mathematical knowledge of mothers and children in one Torres Strait Islander community in Australia. The community encouraged parental involvement in their children’s learning and schooling. The study explored parents’ understandings of mathematics and how their children came to learn about it on the island. A funds of knowledge approach was used in the study. This approach is based on the premise that people are competent and have knowledge that has been historically and culturally accumulated into a body of knowledge and skills essential for their functioning and well-being (Moll, 1992). The participants, three adults and one child are featured in this paper. Three separate events are described with epiphanic or illuminative moments analysed to ascertain the features that enabled an understanding of the nature of the mathematical events. The study found that Indigenous ways of knowing of mathematics were deeply embedded in rich cultural practices that were tied to the community. This finding has implications for teachers of children in the early years. Where school mathematics is often presented as disembodied and isolated facts with children seeing little relevance, learning a different perspective of mathematics that is tied to the resources and practices of children’s lives and facilitated through social relationships, may go a long way to improving the engagement of children and their parents in learning and schooling.
Resumo:
Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Conventionally the fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve in ISO834 [1]. However, modern commercial and residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the fire performance of LSF walls was undertaken using realistic design fire curves developed based on Eurocode parametric [2] and Barnett’s BFD [3] curves using both full scale fire tests and numerical studies. It included LSF walls without cavity insulation, and the recently developed externally insulated composite panel system. This paper presents the details of finite element models developed to simulate the full scale fire tests of LSF wall panels under realistic design fires. Finite element models of LSF walls exposed to realistic design fires were developed, and analysed under both transient and steady state fire conditions using the measured stud time-temperature curves. Transient state analyses were performed to simulate fire test conditions while steady state analyses were performed to obtain the load ratio versus time and failure temperature curves of LSF walls. Details of the developed finite element models and the results including the axial deformation and lateral deflection versus time curves, and the stud failure modes and times are presented in this paper. Comparison with fire test results demonstrate the ability of developed finite element models to predict the performance and fire resistance ratings of LSF walls under realistic design fires.
Resumo:
Electricity network investment and asset management require accurate estimation of future demand in energy consumption within specified service areas. For this purpose, simple models are typically developed to predict future trends in electricity consumption using various methods and assumptions. This paper presents a statistical model to predict electricity consumption in the residential sector at the Census Collection District (CCD) level over the state of New South Wales, Australia, based on spatial building and household characteristics. Residential household demographic and building data from the Australian Bureau of Statistics (ABS) and actual electricity consumption data from electricity companies are merged for 74 % of the 12,000 CCDs in the state. Eighty percent of the merged dataset is randomly set aside to establish the model using regression analysis, and the remaining 20 % is used to independently test the accuracy of model prediction against actual consumption. In 90 % of the cases, the predicted consumption is shown to be within 5 kWh per dwelling per day from actual values, with an overall state accuracy of -1.15 %. Given a future scenario with a shift in climate zone and a growth in population, the model is used to identify the geographical or service areas that are most likely to have increased electricity consumption. Such geographical representation can be of great benefit when assessing alternatives to the centralised generation of energy; having such a model gives a quantifiable method to selecting the 'most' appropriate system when a review or upgrade of the network infrastructure is required.
Resumo:
Spatially-explicit modelling of grassland classes is important to site-specific planning for improving grassland and environmental management over large areas. In this study, a climate-based grassland classification model, the Comprehensive and Sequential Classification System (CSCS) was integrated with spatially interpolated climate data to classify grassland in Gansu province, China. The study area is characterized by complex topographic features imposed by plateaus, high mountains, basins and deserts. To improve the quality of the interpolated climate data and the quality of the spatial classification over this complex topography, three linear regression methods, namely an analytic method based on multiple regression and residues (AMMRR), a modification of the AMMRR method through adding the effect of slope and aspect to the interpolation analysis (M-AMMRR) and a method which replaces the IDW approach for residue interpolation in M-AMMRR with an ordinary kriging approach (I-AMMRR), for interpolating climate variables were evaluated. The interpolation outcomes from the best interpolation method were then used in the CSCS model to classify the grassland in the study area. Climate variables interpolated included the annual cumulative temperature and annual total precipitation. The results indicated that the AMMRR and M-AMMRR methods generated acceptable climate surfaces but the best model fit and cross validation result were achieved by the I-AMMRR method. Twenty-six grassland classes were classified for the study area. The four grassland vegetation classes that covered more than half of the total study area were "cool temperate-arid temperate zonal semi-desert", "cool temperate-humid forest steppe and deciduous broad-leaved forest", "temperate-extra-arid temperate zonal desert", and "frigid per-humid rain tundra and alpine meadow". The vegetation classification map generated in this study provides spatial information on the locations and extents of the different grassland classes. This information can be used to facilitate government agencies' decision-making in land-use planning and environmental management, and for vegetation and biodiversity conservation. The information can also be used to assist land managers in the estimation of safe carrying capacities which will help to prevent overgrazing and land degradation.
Resumo:
A numerical investigation of the behaviour of fuel injection through a porous surface in an inlet-fuelled, radial-farming scramjet is presented. The performance of porous fuel injection is compared to discrete port hole injection at an equivalence ratio of φ ≈ 0.4 for both cases. The comparison is performed at a Mach 6.5 flow condition with a total specific enthalpy of 4.3 MJ/kg. The numerical results are compared to experiments performed in the T4 shock tunnel where available. The presented results demonstrate for the first time, that porous fuel injection has the potential to outperform port hole injectors in scramjet engines in terms of fuel-air mixing, ignition delays and achievable combustion efficiencies despite reduced fuel penetration heights.
Resumo:
Although there was substantial research into the occupational health and safety sector over the past forty years, this generally focused on statistical analyses of data related to costs and/or fatalities and injuries. There is a lack of mathematical modelling of the interactions between workers and the resulting safety dynamics of the workplace. There is also little work investigating the potential impact of different safety intervention programs prior to their implementation. In this article, we present a fundamental, differential equation-based model of workplace safety that treats worker safety habits similarly to an infectious disease in an epidemic model. Analytical results for the model, derived via phase plane and stability analysis, are discussed. The model is coupled with a model of a generic safety strategy aimed at minimising unsafe work habits, to produce an optimal control problem. The optimal control model is solved using the forward-backward sweep numerical scheme implemented in Matlab.
Resumo:
Presentation by Dr Caroline Grant, Science & Engineering Faculty, IHBI, at Managing your research data seminar, 2012
Resumo:
The cotton strip assay (CSA) is an established technique for measuring soil microbial activity. The technique involves burying cotton strips and measuring their tensile strength after a certain time. This gives a measure of the rotting rate, R, of the cotton strips. R is then a measure of soil microbial activity. This paper examines properties of the technique and indicates how the assay can be optimised. Humidity conditioning of the cotton strips before measuring their tensile strength reduced the within and between day variance and enabled the distribution of the tensile strength measurements to approximate normality. The test data came from a three-way factorial experiment (two soils, two temperatures, three moisture levels). The cotton strips were buried in the soil for intervals of time ranging up to 6 weeks. This enabled the rate of loss of cotton tensile strength with time to be studied under a range of conditions. An inverse cubic model accounted for greater than 90% of the total variation within each treatment combination. This offers support for summarising the decomposition process by a single parameter R. The approximate variance of the decomposition rate was estimated from a function incorporating the variance of tensile strength and the differential of the function for the rate of decomposition, R, with respect to tensile strength. This variance function has a minimum when the measured strength is approximately 2/3 that of the original strength. The estimates of R are almost unbiased and relatively robust against the cotton strips being left in the soil for more or less than the optimal time. We conclude that the rotting rate X should be measured using the inverse cubic equation, and that the cotton strips should be left in the soil until their strength has been reduced to about 2/3.
Resumo:
In large sedimentary basins with layers of different rocks, the groundwater flow between aquifers depends on the hydraulic conductivity (K) of the separating low-permeable rocks, or aquitards. Three methods were developed to evaluate K in aquitards for areas with limited field data: • Coherence and harmonic analysis: estimates the regional-scale K based on water-level fluctuations in adjacent aquifers. • Cokriging and Bayes' rule: infers K from downhole geophysical logs. • Fluvial process model: reproduces the lithology architecture of sediment formations which can be converted to K. These proposed methods enable good estimates of K and better planning of further drillholes.
Resumo:
This paper describes and analyzes research on the dynamics of long-term care and the policy relevance of identifying the sources of persistence in caregiving arrangements (including the effect of dynamics on parameter estimates, implications for family welfare, parent welfare, child welfare, and cost of government programs). We discuss sources and causes of observed persistence in caregiving arrangements including inertia/state dependence (confounded by unobserved heterogeneity) and costs of changing caregivers. We comment on causes of dynamics including learning/human capital accumulation; burnout; and game-playing. We suggest how to deal with endogenous geography; dynamics in discrete and continuous choices; and equilibrium issues (multiple equilibria, dynamic equilibria). We also present an overview of commonly used longitudinal data sets and evaluate their relative advantages/disadvantages. We also discuss other data issues related to noisy measures of wealth and family structure. Finally, we suggest some methods to handle econometric problems such as endogeneous geography. © 2014 Springer Science+Business Media New York.