903 resultados para mathematical modeling of PTO


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Materials are inherently multi-scale in nature consisting of distinct characteristics at various length scales from atoms to bulk material. There are no widely accepted predictive multi-scale modeling techniques that span from atomic level to bulk relating the effects of the structure at the nanometer (10-9 meter) on macro-scale properties. Traditional engineering deals with treating matter as continuous with no internal structure. In contrast to engineers, physicists have dealt with matter in its discrete structure at small length scales to understand fundamental behavior of materials. Multiscale modeling is of great scientific and technical importance as it can aid in designing novel materials that will enable us to tailor properties specific to an application like multi-functional materials. Polymer nanocomposite materials have the potential to provide significant increases in mechanical properties relative to current polymers used for structural applications. The nanoscale reinforcements have the potential to increase the effective interface between the reinforcement and the matrix by orders of magnitude for a given reinforcement volume fraction as relative to traditional micro- or macro-scale reinforcements. To facilitate the development of polymer nanocomposite materials, constitutive relationships must be established that predict the bulk mechanical properties of the materials as a function of the molecular structure. A computational hierarchical multiscale modeling technique is developed to study the bulk-level constitutive behavior of polymeric materials as a function of its molecular chemistry. Various parameters and modeling techniques from computational chemistry to continuum mechanics are utilized for the current modeling method. The cause and effect relationship of the parameters are studied to establish an efficient modeling framework. The proposed methodology is applied to three different polymers and validated using experimental data available in literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, the bio-conjugated nanostructured materials have emerged as a new class of materials for the bio-sensing and medical diagnostics applications. In spite of their multi-directional applications, interfacing nanomaterials with bio-molecules has been a challenge due to somewhat limited knowledge about the underlying physics and chemistry behind these interactions and also for the complexity of biomolecules. The main objective of this dissertation is to provide such a detailed knowledge on bioconjugated nanomaterials toward their applications in designing the next generation of sensing devices. Specifically, we investigate the changes in the electronic properties of a boron nitride nanotube (BNNT) due to the adsorption of different bio-molecules, ranging from neutral (DNA/RNA nucleobases) to polar (amino acid molecules). BNNT is a typical member of III-V compounds semiconductors with morphology similar to that of carbon nanotubes (CNTs) but with its own distinct properties. More specifically, the natural affinity of BNNTs toward living cells with no apparent toxicity instigates the applications of BNNTs in drug delivery and cell therapy. Our results predict that the adsorption of DNA/RNA nucleobases on BNNTs amounts to different degrees of modulation in the band gap of BNNTs, which can be exploited for distinguishing these nucleobases from each other. Interestingly, for the polar amino acid molecules, the nature of interaction appeared to vary ranging from Coulombic, van der Waals and covalent depending on the polarity of the individual molecules, each with a different binding strength and amount of charge transfer involved in the interaction. The strong binding of amino acid molecules on the BNNTs explains the observed protein wrapping onto BNNTs without any linkers, unlike carbon nanotubes (CNTs). Additionally, the widely varying binding energies corresponding to different amino acid molecules toward BNNTs indicate to the suitability of BNNTs for the biosensing applications, as compared to the metallic CNTs. The calculated I-V characteristics in these bioconjugated nanotubes predict notable changes in the conductivity of BNNTs due to the physisorption of DNA/RNA nucleobases. This is not the case with metallic CNTs whose transport properties remained unaltered in their conjugated systems with the nucleobases. Collectively, the bioconjugated BNNTs are found to be an excellent system for the next generation sensing devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The South Florida Water Management District (SFWMD) manages and operates numerous water control structures that are subject to scour. In an effort to reduce scour downstream of these gated structures, laboratory experiments were performed to investigate the effect of active air-injection downstream of the terminal structure of a gated spillway on the depth of the scour hole. A literature review involving similar research revealed significant variables such as the ratio of headwater-to-tailwater depths, the diffuser angle, sediment uniformity, and the ratio of air-to-water volumetric discharge values. The experimental design was based on the analysis of several of these non-dimensional parameters. Bed scouring at stilling basins downstream of gated spillways has been identified as posing a serious risk to the spillway’s structural stability. Although this type of scour has been studied in the past, it continues to represent a real threat to water control structures and requires additional attention. A hydraulic scour channel comprised of a head tank, flow straightening section, gated spillway, stilling basin, scour section, sediment trap, and tail-tank was used to further this analysis. Experiments were performed in a laboratory channel consisting of a 1:30 scale model of the SFWMD S65E spillway structure. To ascertain the feasibility of air injection for scour reduction a proof-of-concept study was performed. Experiments were conducted without air entrainment and with high, medium, and low air entrainment rates for high and low headwater conditions. For the cases with no air entrainment it was found that there was excessive scour downstream of the structure due to a downward roller formed upon exiting the downstream sill of the stilling basin. When air was introduced vertically just downstream of, and at the same level as, the stilling basin sill, it was found that air entrainment does reduce scour depth by up to 58% depending on the air flow rate, but shifts the deepest scour location to the sides of the channel bed instead of the center. Various hydraulic flow conditions were tested without air injection to verify which scenario caused more scour. That scenario, uncontrolled free, in which water does not contact the gate and the water elevation in the stilling basin is lower than the spillway crest, would be used for the remainder of experiments testing air injection. Various air flow rates, diffuser elevations, air hole diameters, air hole spacings, diffuser angles and widths were tested in over 120 experiments. Optimal parameters include air injection at a rate that results in a water-to-air ratio of 0.28, air holes 1.016mm in diameter the entire width of the stilling basin, and a vertically orientated injection pattern. Detailed flow measurements were collected for one case using air injection and one without. An identical flow scenario was used for each experiment, namely that of a high flow rate and upstream headwater depth and a low tailwater depth. Equilibrium bed scour and velocity measurements were taken using an Acoustic Doppler Velocimeter at nearly 3000 points. Velocity data was used to construct a vector plot in order to identify which flow components contribute to the scour hole. Additionally, turbulence parameters were calculated in an effort to help understand why air-injection reduced bed scour. Turbulence intensities, normalized mean flow, normalized kinetic energy, and anisotropy of turbulence plots were constructed. A clear trend emerged that showed air-injection reduces turbulence near the bed and therefore reduces scour potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This document will demonstrate the methodology used to create an energy and conductance based model for power electronic converters. The work is intended to be a replacement for voltage and current based models which have limited applicability to the network nodal equations. Using conductance-based modeling allows direct application of load differential equations to the bus admittance matrix (Y-bus) with a unified approach. When applied directly to the Y-bus, the system becomes much easier to simulate since the state variables do not need to be transformed. The proposed transformation applies to loads, sources, and energy storage systems and is useful for DC microgrids. Transformed state models of a complete microgrid are compared to experimental results and show the models accurately reflect the system dynamic behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PMR-15 polyimide is a polymer that is used as a matrix in composites. These composites with PMR-15 matrices are called advanced polymer matrix composite that is abundantly used in the aerospace and electronics industries because of its high temperature resistivity. Apart from having high temperature sustainability, PMR-15 composites also display good thermal-oxidative stability, mechanical properties, processability and low costs, which makes it a suitable material for manufacturing aircraft structures. PMR-15 uses the reverse Diels-Alder (RDA) method for crosslinking which provides it with the groundwork for its distinctive thermal stability and a range of 280-300 degree Centigrade use temperature. Regardless of such desirable properties, this material has a number of limitations that compromises its application on a large scale basis. PMR-15 composites has been known to be very vulnerable to micro-cracking at inter and intra-laminar cracking. But the major factor that hinders its demand is PMR-15's carcinogenic constituent, methylene dianilineme (MDA), also a liver toxin. The necessity of providing a safe working environment during its production adds up to the cost of this material. In this study, Molecular Dynamics and Energy Minimization techniques are utilized to simulate a structure of PMR-15 at a given density of 1.324 g/cc and an attempt to recreate the polyimide to reduce the number of experimental testing and hence subdue the health hazards as well as the cost involved in its production. Even though this study does not involve in validating any mechanical properties of the model, it could be used in future for the validation of its properties and further testing for different properties like aging, microcracking, creep etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For half a century the integrated circuits (ICs) that make up the heart of electronic devices have been steadily improving by shrinking at an exponential rate. However, as the current crop of ICs get smaller and the insulating layers involved become thinner, electrons leak through due to quantum mechanical tunneling. This is one of several issues which will bring an end to this incredible streak of exponential improvement of this type of transistor device, after which future improvements will have to come from employing fundamentally different transistor architecture rather than fine tuning and miniaturizing the metal-oxide-semiconductor field effect transistors (MOSFETs) in use today. Several new transistor designs, some designed and built here at Michigan Tech, involve electrons tunneling their way through arrays of nanoparticles. We use a multi-scale approach to model these devices and study their behavior. For investigating the tunneling characteristics of the individual junctions, we use a first-principles approach to model conduction between sub-nanometer gold particles. To estimate the change in energy due to the movement of individual electrons, we use the finite element method to calculate electrostatic capacitances. The kinetic Monte Carlo method allows us to use our knowledge of these details to simulate the dynamics of an entire device— sometimes consisting of hundreds of individual particles—and watch as a device ‘turns on’ and starts conducting an electric current. Scanning tunneling microscopy (STM) and the closely related scanning tunneling spectroscopy (STS) are a family of powerful experimental techniques that allow for the probing and imaging of surfaces and molecules at atomic resolution. However, interpretation of the results often requires comparison with theoretical and computational models. We have developed a new method for calculating STM topographs and STS spectra. This method combines an established method for approximating the geometric variation of the electronic density of states, with a modern method for calculating spin-dependent tunneling currents, offering a unique balance between accuracy and accessibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The municipality of San Juan La Laguna, Guatemala is home to approximately 5,200 people and located on the western side of the Lake Atitlán caldera. Steep slopes surround all but the eastern side of San Juan. The Lake Atitlán watershed is susceptible to many natural hazards, but most predictable are the landslides that can occur annually with each rainy season, especially during high-intensity events. Hurricane Stan hit Guatemala in October 2005; the resulting flooding and landslides devastated the Atitlán region. Locations of landslide and non-landslide points were obtained from field observations and orthophotos taken following Hurricane Stan. This study used data from multiple attributes, at every landslide and non-landslide point, and applied different multivariate analyses to optimize a model for landslides prediction during high-intensity precipitation events like Hurricane Stan. The attributes considered in this study are: geology, geomorphology, distance to faults and streams, land use, slope, aspect, curvature, plan curvature, profile curvature and topographic wetness index. The attributes were pre-evaluated for their ability to predict landslides using four different attribute evaluators, all available in the open source data mining software Weka: filtered subset, information gain, gain ratio and chi-squared. Three multivariate algorithms (decision tree J48, logistic regression and BayesNet) were optimized for landslide prediction using different attributes. The following statistical parameters were used to evaluate model accuracy: precision, recall, F measure and area under the receiver operating characteristic (ROC) curve. The algorithm BayesNet yielded the most accurate model and was used to build a probability map of landslide initiation points. The probability map developed in this study was also compared to the results of a bivariate landslide susceptibility analysis conducted for the watershed, encompassing Lake Atitlán and San Juan. Landslides from Tropical Storm Agatha 2010 were used to independently validate this study’s multivariate model and the bivariate model. The ultimate aim of this study is to share the methodology and results with municipal contacts from the author's time as a U.S. Peace Corps volunteer, to facilitate more effective future landslide hazard planning and mitigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Volcán Pacaya is one of three currently active volcanoes in Guatemala. Volcanic activity originates from the local tectonic subduction of the Cocos plate beneath the Caribbean plate along the Pacific Guatemalan coast. Pacaya is characterized by generally strombolian type activity with occasional larger vulcanian type eruptions approximately every ten years. One particularly large eruption occurred on May 27, 2010. Using GPS data collected for approximately 8 years before this eruption and data from an additional three years of collection afterwards, surface movement covering the period of the eruption can be measured and used as a tool to help understand activity at the volcano. Initial positions were obtained from raw data using the Automatic Precise Positioning Service provided by the NASA Jet Propulsion Laboratory. Forward modeling of observed 3-D displacements for three time periods (before, covering and after the May 2010 eruption) revealed that a plausible source for deformation is related to a vertical dike or planar surface trending NNW-SSE through the cone. For three distinct time periods the best fitting models describe deformation of the volcano: 0.45 right lateral movement and 0.55 m tensile opening along the dike mentioned above from October 2001 through January 2009 (pre-eruption); 0.55 m left lateral slip along the dike mentioned above for the period from January 2009 and January 2011 (covering the eruption); -0.025 m dip slip along the dike for the period from January 2011 through March 2013 (post-eruption). In all bestfit models the dike is oriented with a 75° westward dip. These data have respective RMS misfit values of 5.49 cm, 12.38 cm and 6.90 cm for each modeled period. During the time period that includes the eruption the volcano most likely experienced a combination of slip and inflation below the edifice which created a large scar at the surface down the northern flank of the volcano. All models that a dipping dike may be experiencing a combination of inflation and oblique slip below the edifice which augments the possibility of a westward collapse in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Propofol and sevoflurane display additivity for gamma-aminobutyric acid receptor activation, loss of consciousness, and tolerance of skin incision. Information about their interaction regarding electroencephalographic suppression is unavailable. This study examined this interaction as well as the interaction on the probability of tolerance of shake and shout and three noxious stimulations by using a response surface methodology. METHODS: Sixty patients preoperatively received different combined concentrations of propofol (0-12 microg/ml) and sevoflurane (0-3.5 vol.%) according to a crisscross design (274 concentration pairs, 3 to 6 per patient). After having reached pseudo-steady state, the authors recorded bispectral index, state and response entropy and the response to shake and shout, tetanic stimulation, laryngeal mask airway insertion, and laryngoscopy. For the analysis of the probability of tolerance by logistic regression, a Greco interaction model was used. For the separate analysis of bispectral index, state and response entropy suppression, a fractional Emax Greco model was used. All calculations were performed with NONMEM V (GloboMax LLC, Hanover, MD). RESULTS: Additivity was found for all endpoints, the Ce(50, PROP)/Ce(50, SEVO) for bispectral index suppression was 3.68 microg. ml(-1)/ 1.53 vol.%, for tolerance of shake and shout 2.34 microg . ml(-1)/ 1.03 vol.%, tetanic stimulation 5.34 microg . ml(-1)/ 2.11 vol.%, laryngeal mask airway insertion 5.92 microg. ml(-1) / 2.55 vol.%, and laryngoscopy 6.55 microg. ml(-1)/2.83 vol.%. CONCLUSION: For both electroencephalographic suppression and tolerance to stimulation, the interaction of propofol and sevoflurane was identified as additive. The response surface data can be used for more rational dose finding in case of sequential and coadministration of propofol and sevoflurane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P450 oxidoreductase (POR) is the obligate electron donor for microsomal cytochrome P450s and mutations in POR cause several metabolic disorders. We have modeled the structure of human P450 oxidoreductase by in silico amino acid replacements in the rat POR crystal structure. The rat POR has 94% homology with human POR and 38 amino acids were replaced to make its sequence identical to human POR. Several rounds of molecular dynamic simulations refined the model and removed structural clashes from side chain alterations of replaced amino acids. This approach has the advantage of keeping the cofactor contacts and structural features of the core enzyme intact which could not be achieved by homology based approaches. The final model from our approach was of high quality and compared well with experimentally determined structures of other PORs. This model will be used for analyzing the structural implications of mutations and polymorphisms in human POR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution and highly precise age models for recent lake sediments (last 100–150 years) are essential for quantitative paleoclimate research. These are particularly important for sedimentological and geochemical proxies, where transfer functions cannot be established and calibration must be based upon the relation of sedimentary records to instrumental data. High-precision dating for the calibration period is most critical as it determines directly the quality of the calibration statistics. Here, as an example, we compare radionuclide age models obtained on two high-elevation glacial lakes in the Central Chilean Andes (Laguna Negra: 33°38′S/70°08′W, 2,680 m a.s.l. and Laguna El Ocho: 34°02′S/70°19′W, 3,250 m a.s.l.). We show the different numerical models that produce accurate age-depth chronologies based on 210Pb profiles, and we explain how to obtain reduced age-error bars at the bottom part of the profiles, i.e., typically around the end of the 19th century. In order to constrain the age models, we propose a method with five steps: (i) sampling at irregularly-spaced intervals for 226Ra, 210Pb and 137Cs depending on the stratigraphy and microfacies, (ii) a systematic comparison of numerical models for the calculation of 210Pb-based age models: constant flux constant sedimentation (CFCS), constant initial concentration (CIC), constant rate of supply (CRS) and sediment isotope tomography (SIT), (iii) numerical constraining of the CRS and SIT models with the 137Cs chronomarker of AD 1964 and, (iv) step-wise cross-validation with independent diagnostic environmental stratigraphic markers of known age (e.g., volcanic ash layer, historical flood and earthquakes). In both examples, we also use airborne pollutants such as spheroidal carbonaceous particles (reflecting the history of fossil fuel emissions), excess atmospheric Cu deposition (reflecting the production history of a large local Cu mine), and turbidites related to historical earthquakes. Our results show that the SIT model constrained with the 137Cs AD 1964 peak performs best over the entire chronological profile (last 100–150 years) and yields the smallest standard deviations for the sediment ages. Such precision is critical for the calibration statistics, and ultimately, for the quality of the quantitative paleoclimate reconstruction. The systematic comparison of CRS and SIT models also helps to validate the robustness of the chronologies in different sections of the profile. Although surprisingly poorly known and under-explored in paleolimnological research, the SIT model has a great potential in paleoclimatological reconstructions based on lake sediments

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The past few years, multimodal interaction has been gaining importance in virtual environments. Although multimodality renders interacting with an environment more natural and intuitive, the development cycle of such an application is often long and expensive. In our overall field of research, we investigate how modelbased design can facilitate the development process by designing environments through the use of highlevel diagrams. In this scope, we present ‘NiMMiT’, a graphical notation for expressing and evaluating multimodal user interaction; we elaborate on the NiMMiT primitives and demonstrate its use by means of a comprehensive example.