995 resultados para mahogany shoot borer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to report single season effects of wood biochar (char) application coupled with N fertilization on soil chemical properties, aerobic rice growth and grain yield in a clayey Rhodic Ferralsol in the Brazilian Savannah. Char application effected an increase in soil pH, K, Ca, Mg, CEC, Mn and nitrate while decreasing Al content and potential acidity of soils. No distinct effect of char application on grain yield of aerobic rice was observed. We believe that soil properties impacted by char application were inconsequential for rice yields because neither water, low pH, nor the availability of K or P were limiting factors for rice production. Rate of char above 16 Mg ha^(−1) reduced leaf area index and total shoot dry matter by 72 days after sowing. The number of panicles infected by rice blast decreased with increasing char rate. Increased dry matter beyond the remobilization capacity of the crop, and high number of panicles infected by rice blast were the likely cause of the lower grain yield observed when more than 60 kg N ha^(−1) was applied. The optimal rate of N was 46 kg ha^(−1) and resulted in a rice grain yield above 3 Mg ha^(−1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vegetables represent a main source of micro-nutrients which can improve the health status of malnourished poor in the world. Spinach (Spinacia oleracea L.) is a popular leafy vegetable in many countries which is rich with several important micro-nutrients. Thus, consuming Spinach helps to overcome micro-nutrient deficiencies. Pests and pathogens act as major yield constraints in food production. Root-knot nematodes, Meloidogyne species, constitute a large group of highly destructive plant pests. Spinach is found to be highly susceptible for these nematode attacks. Though agricultural production has largely benefited from modern technologies and innovations, some important dimensions which can minimize the yield losses have been neglected by most of the growers. Pre-plant or initial nematode density in soil is a crucial biotic factor which is directly responsible for crop losses. Hence, information on preplant nematode densities and the corresponding damage is of vital importance to develop successful control procedures to enhance crop production. In the present study, effect of seven initial densities of M. incognita, i.e., 156, 312, 625, 1250, 2,500, 5,000 and 10,000 infective juveniles (IJs)/plant (equivalent to 1000cm3 soil) on the growth and root infestation on potted spinach plants was determined in a screen house. In order to ensure a high accuracy, root infestation was ascertained by the number of galls formed, the percentage galled-length of feeder roots and galled-feeder roots, and egg production, per plant. Fifty days post-inoculation, shoot length and weight, and root length were suppressed at the lowest IJs density. However, the pathogenic effect was pronounced at the highest density at which 43%, 46% and 45% reduction in shoot length and weight, and root length, respectively, was recorded. The highest reduction in root weight (26%) was detected at the second highest density. The Number of galls and percentage galled-length of feeder roots/per plant showed significant progressive increase across the increasing IJs density with the highest mean value of 432.3 and 54%, respectively. The two shoot growth parameters and root length showed significant inverse relationship with the increasing gall formation. Moreover, the shoot and root length were shown to be mutually dependent on each other. Suppression of shoot growth of spinach greatly affects the grower’s economy. Hence, control measures are essentially needed to ensure a better production of spinach via reducing the pre-plant density below the level of 0.156 IJs/cm3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta investigación busca analizar el proceso de internacionalización del conflicto armado en Colombia, teniendo en cuenta que durante casi cincuenta años pasó desapercibido e incluso indiferente, tanto a nivel doméstico como por el sistema internacional. De igual manera, el objetivo general de este análisis es evaluar las consecuencias del conflicto armado en Colombia en las relaciones de seguridad fronteriza durante el periodo del 2002-2006; a partir de esto, se plantean cuatro propósitos principales. Primero, describir el proceso de internacionalización del conflicto, entendiendo que su incidencia en la zona se ha desarrollado desde el concepto del efecto derrame. Segundo, establecer si existe alguna diferencia sobre la incidencia del conflicto en los diferentes puntos de frontera y determinar por qué es diferente la situación en los puntos de frontera para Venezuela y Ecuador. Para ello, se analizarán las manifestaciones del conflicto que han incidido en las relaciones con Venezuela, y a partir de esto establecer sus repercusiones; de la misma forma, se examinaran las manifestaciones que han incidido del lado ecuatoriano. Tercero, se buscará establecer de qué manera es similar o diferente la incidencia del conflicto armado colombiano con respecto a cada frontera de estudio y determinar sus repercusiones en las relaciones sobre la seguridad fronteriza. Cuarto, se pretende evaluar la posibilidad de un acercamiento por parte de los tres países en aras de buscar un beneficio común, adoptando un régimen de seguridad colectiva o de intereses compartidos que permitan combatir en conjunto la seguridad en los puntos de frontera, que finalmente es la causa que distorsiona las relaciones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El fuego bacteriano, causado por Erwinia amylovora, es una enfermedad muy importante a nivel comercial y económico porque afecta a plantas de la familia de las rosáceas y es especialmente agresiva en manzano (Pyrus malus) y peral (Pyrus communis), así como en plantas ornamentales (Crataegus, Cotoneaster o Pyracantha). Esta enfermedad está distribuida por todo el mundo en zonas climáticas templadas de Amércia del Norte, Nueva Zelanda, Japón, Israel, Turquí y Europa. En España, el fuego bacteriano fue detectado por primera vez en 1995 en el norte del País (Euskadi) y más tarde en nuevos focos aparecidos en otras áreas. La enfermedad puede ser controlada comercialmente mediante la aplicación de pesticidas quimicos (derivados de cobre, antibioticos). Sin embargo, muchos de los productos químicos presentan baja actividad o causan fitotoxicidad, y la estreptomicina, el producto más eficaz, esta prohibido en muchos países, incluyendo España. Por tanto, en ausencia de apropiados agentes químicos, el control biológico se contempla como una buena alternativa. En el presente trabajo, un agente de control biológico, Pseudomonas fluorescens EPS62e, ha sido seleccionada de entre 600 aislados de las especies P. fluorescens y Pantoea agglomerans obtenidos de flores, frutos y hojas de plantas de la familia de las rosáceas durante una prospección llevada a cabo en varias áreas geográficas de España. La cepa ha sido seleccionada por su capacidad de suprimir la infecciones producidas por E. amylovora frutos inmaduros, flores y brotes de peral en condiciones de ambiente controlado, presentando unos niveles de control similares a los obtenidos mediante el control químico usando derivados de cobre o antibióticos. La cepa además ha mostrado la capacidad de colonizar y sobrevivir en flores y heridas producidas en frutos inmaduros en condiciones de ambiento controlado pero también en flores en condiciones de campo. La exclusión de E. amylovora medinate la colonización de la superficie, el consumo de nutrientes, y la interacción entre las células del patógeno y del agente de biocontrol es la principal causa de la inhibición del fuego bacteriano por la cepa EPS62e. Estas características constituyen aspectos interesantes para un desarrollo efectivo de la cepa EPS62e como un agente de biocontrol del fuego bacteriano en condiciones comerciales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A dual isotopic technique was used to assess the effects of soil type, and residues of Gliricidia sepium, without and with added fertiliser-P on the utilisation of P. Upland rice (Oryza sativa) was grown for 70 days in two tropical acid soils of different P sorbing capacity and P status. Uniformly P-32-labelled soils were treated with inorganic fertiliser-P tagged with P-33, Gliricidia sepium residue applied at planting and 3 weeks earlier, and in a combination of fertiliser-P and Gliricidia applied at and 3 weeks before planting. There were significant responses of shoot and root weights, and total P uptake to Gliricidia- and/or fertiliser-P addition in the Ultisol (low P status) but not the Oxisol (high P status), suggesting that P in the latter soil was not yield limiting, despite the high standard P requirement. Similarly, incorporation of Gliricidia three weeks before planting further increased shoot weight only in the Ultisol. There were generally higher proportions, quantities and percent utilisations of the Gliricidia- P and fertiliser-P in the Ultisol than in the Oxisol. Gliricidia significantly increased the utilisation of fertiliser-P only in the Ultisol. However, early application of Gliricidia increased Gliricidia- P but not fertiliser-P utilisation in the Ultisol. Added fertiliser-P did not influence Gliricidia- P utilisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation into the phylogenetic variation of plant tolerance and the root and shoot uptake of organic contaminants was undertaken. The aim was to determine if particular families or genera were tolerant of, or accumulated organic pollutants. Data were collected from sixty-nine studies. The variation between experiments was accounted for using a residual maximum likelihood analysis to approximate means for individual taxa. A nested ANOVA was subsequently used to determine differences at a number of differing phylogenetic levels. Significant differences were observed at a number of phylogenetic levels for the tolerance to TPH, the root concentration factor and the shoot concentration factor. There was no correlation between the uptake of organic pollutants and that of heavy metals. The data indicate that plant phylogeny is an important influence on both the plant tolerance and uptake of organic pollutants. If this study can be expanded, such information can be used when designing plantings for phytoremediation or risk reduction during the restoration of contaminated sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An understanding of the primary pathways of plant uptake of organic pollutants is important to enable the risks from crops grown on contaminated soils to be assessed. A series of experiments were undertaken to quantify the importance of the pathways of contamination and the Subsequent transport within the plant using white clover plants grown in solution culture. Root uptake was primarily an absorption process, but a component of the contamination was a result of the transpiration flux to the shoot for higher Solubility compounds. The root contamination can be easily predicted using a simple relationship with K-OW, although if a composition model was used based on lipid content, a significant under prediction of the contamination was observed. Shoot uptake was driven by the transpiration stream flux which was related to the solubility of the individual PAH rather than the K-OW. However, the experiment was over a short duration, 6 days, and models based on K-OW may be better for crops grown in the field where the vegetation will approach equilibrium and transpiration cannot easily be measured, A significant fraction of the shoot contamination resulted from aerial deposition derived from volatilized PAH. This pathway was more significant for compounds approaching log K-OA > 9 and log K-AW < -3. The shoot uptake pathways need further investigation to enable them to be modeled separately, There was no evidence of significant systemic transport of the PAR so transfer outside the transpiration stream is likely to be limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relative zinc (Zn) efficiencies of 33 wheat and 3 barley cultivars were determined by growing them in chelate-buffered culture solutions. Zn efficiency, determined by growth in a Zn-deficient solution relative to that in a medium containing an adequate concentration of Zn, was found to vary between 10% and 63% among the cultivars tested. Out of the 36 cultivars tested, 12 proved to be Zn efficient, 10 were Zn inefficient, and the remaining 14 varieties were classed as intermediate. The most Zn-efficient cultivars included Bakhtawar, Gatcher S61, Wilgoyne, and Madrigal, and the most Zn inefficient included Durati, Songlen, Excalibur, and Chakwal-86. Zn-efficient cultivars accumulated greater amounts of Zn in their shoots than inefficient cultivars, but the correlation between shoot Zn and shoot dry matter production was poor. All the cultivars accumulated higher concentrations of iron (Fe), copper (Cu), manganese (Mn), and phosphorus (P) at deficient levels of Zn, compared with adequate Zn concentrations. The Zn-inefficient cultivars accumulated higher concentrations of these other elements compared to efficient cultivars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of zinc-phosphorus (Zn-P) interaction on Zn efficiency of six wheat cultivars was studied. The higher dry matter yields were observed when Zn was applied at 5 mu g g(-1) soil than with no Zn application. Phosphorus applications also increased dry matter yield up to the application of 25 mu g P g(-1) soil. The dry matter yield was significantly lower at the P rate of 250 mu g g(-1) soil. At the Zn-deficient level, the Zn-efficient cultivars had higher Zn concentrations in the shoots. Zinc concentrations in all cultivars increased when the P level in the soil was increased from 0 to 25 mu g P g(-1) soil except for the cv. Durati, in which Zn concentrations decreased with increases in P levels. However, when ZnxP interactions were investigated, it was observed that at a Zn-deficient level, Zn concentrations in the plant shoot decreased with each higher level of P, and more severe Zn deficiency was observed at P level of 250 mu g g(-1) soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A quantitative model of wheat root systems is developed that links the size and distribution of the root system to the capture of water and nitrogen (which are assumed to be evenly distributed with depth) during grain filling, and allows estimates of the economic consequences of this capture to be assessed. A particular feature of the model is its use of summarizing concepts, and reliance on only the minimum number of parameters (each with a clear biological meaning). The model is then used to provide an economic sensitivity analysis of possible target characteristics for manipulating root systems. These characteristics were: root distribution with depth, proportional dry matter partitioning to roots, resource capture coefficients, shoot dry weight at anthesis, specific root weight and water use efficiency. From the current estimates of parameters it is concluded that a larger investment by the crop in fine roots at depth in the soil, and less proliferation of roots in surface layers, would improve yields by accessing extra resources. The economic return on investment in roots for water capture was twice that of the same amount invested for nitrogen capture. (C) 2003 Annals of Botany Company.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High biomass producing plant species, such as Helianthus annuus, have potential for removing large amounts of trace metals by harvesting the aboveground biomass if sufficient metal concentrations in their biomass can be achieved. However, the low bioavailability of heavy metals in soils and the limited translocation of heavy metals to the shoots by mosthigh biomass producing plant species limit the efficiency of the phytoextraction process. Amendment of a contaminated soil with ethylene diamine letraacetic acid (EDTA) or citric acid increases soluble heavy metal concentrations, potentially rendering them more available for plant uptake. This article discusses the effects of EDTA and citric acid on the uptake of heavy metals and translocation to aboveground harvestable plant parts in Helianthus annuus. EDTA was included in the research for comparison purposes in our quest for less persistent alternatives, suitable for enhanced phytoextraction. Plants were grown in a calcareous soil moderately contaminated with Cu, Pb, Zn, and Cd and treated with increasing concentrations of EDTA (0. 1, 1, 3, 5, 7, and 10 mmol kg(-1) soil) or citric acid (0. 01, 0. 05, 0.25, 0.442, and 0.5 mol kg(-1) soil). Heavy metal concentrations in harvested shoots increased with EDTA concentration but the actual amount of phytoextracted heavy metals decreased at high EDTA concentrations, due to severe growth depression. Helianthus annuus suffered heavy metal stress due to the significantly increased bioavailable metal fraction in the soil. The rapid mineralization of citric acid and the high buffering capacity of the soil made citric acid inefficient in increasing the phytoextracted amounts of heavy metals. Treatments that did not exceed the buffering capacity of the soil (< 0.442 mol kg(-1) soil) did not result in any significant increase in shoot heavy metal concentrations. Treatments with high concentrations resulted in a dissolution of the carbonates and compaction of the soil. These physicochemical changes caused growth depression of Helianthus annuus. EDTA and citric acid added before sowing of Helianthus annuus did not appear to be efficient amendments when phytoextraction of heavy metals from calcareous soils is considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Remediation of soil pollution is one of the many current environmental challenges. Anthropogenic activity has resulted in the contamination of extended areas of land, the remediation of which is both invasive and expensive by conventional means. Phytoextraction of heavy metals from contaminated soils has the prospect of being a more economic in situ alternative. In addition, phytoextraction targets ecotoxicologically the most relevant soil fraction of these metals, i.e. the bioavailable fraction. Greenhouse experiments were carried out to evaluate the potential of four high biomass crop species in their potential for phytoextraction of heavy metals, with or without with the use of soil amendments (EDTA or EDDS). A calcareous dredged sediment derived surface soil, with high organic matter and clay content and moderate levels of heavy metal pollution, was used in the experiments. No growth depression was observed in EDTA or EDDS treated pots in comparison to untreated controls. Metal accumulation was considered to be low for phytoextraction purposes, despite the use of chelating agents. The low observed shoot concentrations of heavy metals were attributed to the low phytoavailability of heavy metals in this particular soil substrate. The mobilising effects induced by EDTA in the soil were found to be too long-lived for application as a soil amendment in phytoextraction. Although EDDS was found to be more biodegradable, higher effect half lives were observed than reported in literature or observed in previous experiments. These findings caution against the use of any amendment, biodegradable or otherwise, without proper investigation of its effects and the longevity thereof. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phytoextraction has been proposed as an alternative remediation technology for soils polluted with heavy metals or radionuclides, but is generally conceived as too slow working. Enhancing the accumulation of trace pollutants in harvestable plant tissues is a prerequisite for the technology to be practically applicable. The chelating aminopolycarboxylic acid, ethylene diamine tetraacetate (EDTA), has been found to enhance shoot accumulation of heavy metals. However, the use of EDTA in phytoextraction may not be suitable due to its high environmental persistence, which may lead to groundwater contamination. This paper aims to assess whether ethylene diamine disuccinate (EDDS), a biodegradable chelator, can be used for enhanced phytoextraction purposes. A laboratory experiment was conducted to examine mobilisation of Cd, Cu, Cr, Ni, Pb and Zn into the soil solution upon application of EDTA or EDDS. The longevity of the induced mobilisation was monitored for a period of 40 days after application. Estimated effect half lives ranged between 3.8 and 7.5 days for EDDS, depending on the applied dose. The minimum observed effect half life of EDTA was 36 days, while for the highest applied dose no decrease was observed throughout the 40 day period of the mobilisation experiment. Performance of EDTA and EDDS for phytoextraction was evaluated by application to Helianthus annuus. Two other potential chelators, known for their biodegradability in comparison to EDTA, were tested in the plant experiment: nitrilo acetic acid (NTA) and citric acid. Uptake of heavy metals was higher in EDDS-treated pots than in EDTA-treated pots. The effects were still considered insufficiently high to consider efficient remediation. This may be partly due to the choice of timing for application of the soil amendment. Fixing the time of application at an earlier point before harvest may yield better results. NTA and citric acid induced no significant effects on heavy metal uptake. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonylphenol polyethoxylates (NPEOs) are surfactants found ubiquitously in the environment due to widespread industrial and domestic use. Biodegradation of NPEOs produces nonylphenol (NP), an endocrine disruptor. Sewage sludge application introduces NPEOs and NP into soils, potentially leading to accumulation in soils and crops. We examined degradation of NP and nonyl phenol-12-ethoxylate (NP12EO) in four soils. NP12EO degraded rapidly (initial half time 0.3-5 days). Concentrations became undetectable within 70-90 days, with a small increase in NP concentrations after 30 days. NP initially degraded quickly (mean half time 11.5 days), but in three soils a recalcitrant fraction of 26-35% remained: the non-degrading fraction may consist of branched isomers, resistant to biodegradation. Uptake of NP by bean plants was also examined. Mean bioconcentration factors for shoots and seeds were 0.71 and 0.58, respectively. Removal of NP from the soil by plant uptake was negligible (0.01-0.02% of initial NP). Root concentrations were substantially higher than shoot and seed concentrations. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic and environmental factors interact to determine the growth and activity of crop root systems. This paper examines the effects of agronomic management and genotype on wheat root systems in the UK and Australia, and suggests ways in which root limitations to crop performance might be alleviated. In a field study in the UK which examined late-season growth and activity, fungicide maintained the size of the root system during early grain-filling, and there were significant differences between cultivars in root distribution with depth below 0.3 m. Shamrock had a longer root system below 0.3 m than varieties such as Hereward and Consort. Fungicide significantly increased root growth at 0.1-0.2 m in one season. In Australia, a wheat line selected for high shoot vigour had associated root vigour during early seedling growth but the effect on root growth did not persist. The results provide examples of genotypic differences in wheat root growth under field conditions which interact with agronomic management in ways which can be exploited to benefit growth and yield in diverse environments.