991 resultados para mRNA stability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rotor-body system with blades interconnected through viscoelastic elements is analyzed for response, loads, and stability in propulsive trim in ground contact and under forward-flight conditions, A conceptual model of a multibladed rotor with rigid flap and lag motions, and the fuselage with rigid pitch and roll motions is considered, Although the interconnecting elements are placed in the in-plane direction, considerable coupling between the flap-lag motions of the blades can occur in certain ranges of interblade element stiffness, Interblade coupling can yield significant changes in the response, loads, and stability that are dependent on the interblade element and rotor-body parameters, Ground resonance stability investigations show that by tuning the interblade element stiffness, the ground resonance instability problem can be reduced or eliminated, The interblade elements with damping and stiffness provide an effective method to overcome the problems of ground and air resonance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stabilization of nanocrystalline grain sizes by second phase particles can facilitate superplasticity at high strain rates and/or low temperatures. A metastable single phase nano-Ni-P alloy prepared by electrodeposition, with a grain size of similar to 6 nm, transforms to a nanoduplex structure at T> 673 K, with similar to 4 vol.% Ni3P particles at triple junctions and within Ni grains. The nanoduplex microstructure is reasonably stable up to 777 K, and the growth of Ni grains occurs in a coupled manner with the growth of Ni3P particles such that the ratio of the two mean sizes (Z) is essentially constant. High temperature tests for a grain size of 290 nm reveal superplastic behavior with an optimum elongation to failure of 810% at a strain rate of 7 x 10(-4) s(-1) and a relatively low temperature of 777 K. Superplastic deformation enhances both grain growth and the ratio Z, implying that grain boundary sliding (GBS) significantly influences the microstructural dynamics. Analysis of the deformation processes suggests that superplasticity is associated with GBS controlled by the overcoming of intragranular particles by dislocations, so that deformation is independent of the grain size. The nano-Ni-P alloy exhibits lower ductility than nano-Ni due to concurrent cavitation caused by higher stresses. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a system comprising a finite number of nodes, with infinite packet buffers, that use unslotted ALOHA with Code Division Multiple Access (CDMA) to share a channel for transmitting packetised data. We propose a simple model for packet transmission and retransmission at each node, and show that saturation throughput in this model yields a sufficient condition for the stability of the packet buffers; we interpret this as the capacity of the access method. We calculate and compare the capacities of CDMA-ALOHA (with and without code sharing) and TDMA-ALOHA; we also consider carrier sensing and collision detection versions of these protocols. In each case, saturation throughput can be obtained via analysis pf a continuous time Markov chain. Our results show how saturation throughput degrades with code-sharing. Finally, we also present some simulation results for mean packet delay. Our work is motivated by optical CDMA in which "chips" can be optically generated, and hence the achievable chip rate can exceed the achievable TDMA bit rate which is limited by electronics. Code sharing may be useful in the optical CDMA context as it reduces the number of optical correlators at the receivers. Our throughput results help to quantify by how much the CDMA chip rate should exceed the TDMA bit rate so that CDMA-ALOHA yields better capacity than TDMA-ALOHA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FACTS controllers are emerging as viable and economic solutions to the problems of large interconnected ne networks, which can endanger the system security. These devices are characterized by their fast response, absence of inertia, and minimum maintenance requirements. Thyristor controlled equipment like Thyristor Controlled Series Capacitor (TCSC), Static Var Compensator (SVC), Thyristor Controlled Phase angle Regulator (TCPR) etc. which involve passive elements result in devices of large sizes with substantial cost and significant labour for installation. An all solid-state device using GTOs leads to reduction in equipment size and has improved performance. The Unified Power Flow Controller (UPFC) is a versatile controller which can be used to control the active and reactive power in the Line independently. The concept of UPFC makes it possible to handle practically all power flow control and transmission line compensation problems, using solid-state controllers, which provide functional flexibility, generally not attainable by conventional thyristor controlled systems. In this paper, we present the development of a control scheme for the series injected voltage of the UPFC to damp the power oscillations and improve transient stability in a power system. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seepage effects on the stability, mobility, and incipient motion of sand-bed particles are experimentally investigated. Seepage through a sand bed in a downward direction (suction) reduces the stability of particles, and it can even initiate their movement. The bed erosion is increased with the increased rates of suction. Whereas the seepage in an upward direction (injection) increases the stability of bed particles, it does not aid initiating their movement. The rate of bed erosion is reduced or even stopped by the increased infection rates. Hydrodynamic conditions leading to the so-called "pseudoincipient motion'' with suction (for the initiation of particles movement that are otherwise at rest under no-seepage conditions), and with injection (for only arresting the particles movement that are otherwise moving initially) are evaluated. The conventional Shields curve cannot be used to predict such pseudoincipient motion conditions with seepage. The concepts thus developed are useful for a better understanding of the sediment transport mechanics and in the design of stable alluvial channels affected by seepage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the ergodic properties of hybrid systems modelled by diffusion processes with state-dependent switching. We investigate the sufficient conditions expressed in terms of the parameters of the underlying process which would ensure the existence of a unique invariant probability and stability in distribution of the flow. It turns out that the conditions would depend on certain averaging mechanisms over the states of the discrete component of the hybrid system. (C) 1999 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flows with velocity profiles very different from the parabolic velocity profile can occur in the entrance region of a tube as well as in tubes with converging/diverging cross-sections. In this paper, asymptotic and numerical studies are undertaken to analyse the temporal stability of such 'non-parabolic' flows in a flexible tube in the limit of high Reynolds numbers. Two specific cases are considered: (i) developing flow in a flexible tube; (ii) flow in a slightly converging flexible tube. Though the mean velocity profile contains both axial and radial components, the flow is assumed to be locally parallel in the stability analysis. The fluid is Newtonian and incompressible, while the flexible wall is modelled as a viscoelastic solid. A high Reynolds number asymptotic analysis shows that the non-parabolic velocity profiles can become unstable in the inviscid limit. This inviscid instability is qualitatively different from that observed in previous studies on the stability of parabolic flow in a flexible tube, and from the instability of developing flow in a rigid tube. The results of the asymptotic analysis are extended numerically to the moderate Reynolds number regime. The numerical results reveal that the developing flow could be unstable at much lower Reynolds numbers than the parabolic flow, and hence this instability can be important in destabilizing the fluid flow through flexible tubes at moderate and high Reynolds number. For flow in a slightly converging tube, even small deviations from the parabolic profile are found to be sufficient for the present instability mechanism to be operative. The dominant non-parallel effects are incorporated using an asymptotic analysis, and this indicates that non-parallel effects do not significantly affect the neutral stability curves. The viscosity of the wall medium is found to have a stabilizing effect on this instability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equilibrium geometries and fundamental vibration frequencies of the Li2F system were calculated by ab initio methods at the MP2 = full/6-311(+ +)G** and CCSD(T) levels. Two isomers were observed and are best described as salts of the Li-2(+) cation with F-. A linear isomer with an arrangement of atoms such as Li-Li-F and a bent C-2v structure are predicted. The stability of these structures are discussed in terms of charge resonance between Li and Li+. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple and rapid HPLC, GC, and TLC procedures have been developed for detection and determination of nimesulide, a non-pharmacopeial drug, in preformulation and dosage form. Use of these techniques has enabled separation of impurities and the precursor in the bulk material and in formulations. Isocratic reversed-phase HPLC was performed on a C-18 column with methanol-water-acetic acid, 67:32:1 (v/v), as mobile phase and UV detection at 230 nm. Calibration curves were linear over the concentration range 100-1000 mug mL(-1) with a good correlation coefficient (0.9993) and a coefficient of variation of 1.5%. Gas chromatography was performed on an OV-17 packed column with temperature programming and flame-ionization detection. The lower limit of determination by HPLC and GC was 4 ppm. Thin-layer chromatography of nimesulide was performed on silica gel G with toluene-ethyl acetate, 8:2, as mobile phase. Stability testing of the drug was performed under different temperature, humidity, and UV-radiation conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We build dynamic models of community assembly by starting with one species in our model ecosystem and adding colonists. We find that the number of species present first increases, then fluctuates about some level. We ask: how large are these fluctuations and how can we characterize them statistically? As in Robert May's work, communities with weaker interspecific interactions permit a greater number of species to coexist on average. We find that as this average increases, however, the relative variation in the number of species and return times to mean community levels decreases. In addition, the relative frequency of large extinction events to small extinction events decreases as mean community size increases. While the model reproduces several of May's results, it also provides theoretical support for Charles Elton's idea that diverse communities such as those found in the tropics should be less variable than depauperate communities such as those found in arctic or agricultural settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When the cold accretion disc coupling between neutral gas and a magnetic field is so weak that the magnetorotational instability is less effective or even stops working, it is of prime interest to investigate the pure hydrodynamic origin of turbulence and transport phenomena. As the Reynolds number increases, the relative importance of the non-linear term in the hydrodynamic equation increases. In an accretion disc where the molecular viscosity is too small, the Reynolds number is large enough for the non-linear term to have new effects. We investigate the scenario of the `weakly non-linear' evolution of the amplitude of the linear mode when the flow is bounded by two parallel walls. The unperturbed flow is similar to the plane Couette flow, but with the Coriolis force included in the hydrodynamic equation. Although there is no exponentially growing eigenmode, because of the self-interaction, the least stable eigenmode will grow in an intermediate phase. Later, this will lead to higher-order non-linearity and plausible turbulence. Although the non-linear term in the hydrodynamic equation is energy-conserving, within the weakly non-linear analysis it is possible to define a lower bound of the energy (alpha A(c)(2), where A(c) is the threshold amplitude) needed for the flow to transform to the turbulent phase. Such an unstable phase is possible only if the Reynolds number >= 10(3-4). The numerical difficulties in obtaining such a large Reynolds number might be the reason for the negative result of numerical simulations on a pure hydrodynamic Keplerian accretion disc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of fluid flow past a membrane of infinitesimal thickness is analysed in the limit of zero Reynolds number using linear and weakly nonlinear analyses. The system consists of two Newtonian fluids of thickness R* and H R*, separated by an infinitesimally thick membrane, which is flat in the unperturbed state. The dynamics of the membrane is described by its normal displacement from the flat state, as well as a surface displacement field which provides the displacement of material points from their steady-state positions due to the tangential stress exerted by the fluid flow. The surface stress in the membrane (force per unit length) contains an elastic component proportional to the strain along the surface of the membrane, and a viscous component proportional to the strain rate. The linear analysis reveals that the fluctuations become unstable in the long-wave (alpha --> 0) limit when the non-dimensional strain rate in the fluid exceeds a critical value Lambda(t), and this critical value increases proportional to alpha(2) in this limit. Here, alpha is the dimensionless wavenumber of the perturbations scaled by the inverse of the fluid thickness R*(-1), and the dimensionless strain rate is given by Lambda(t) = ((gamma) over dot* R*eta*/Gamma*), where eta* is the fluid viscosity, Gamma* is the tension of the membrane and (gamma) over dot* is the strain rate in the fluid. The weakly nonlinear stability analysis shows that perturbations are supercritically stable in the alpha --> 0 limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seismic design of reinforced soil structures involves many uncertainties that arise from the backfill soil properties and tensile strength of the reinforcement which is not addressed in current design guidelines. This paper highlights the significance of variability in the internal stability assessment of reinforced soil structures. Reliability analysis is applied to estimate probability of failure and pseudo‐static approach has been used for the calculation of the tensile strength and length of the reinforcement needed to maintain the internal stability against tension and pullout failures. Logarithmic spiral failure surface has been considered in conjunction with the limit equilibrium method. Two modes of failure namely, tension failure and pullout failure have been considered. The influence of variations of the backfill soil friction angle, the tensile strength of reinforcement, horizontal seismic acceleration on the reliability index against tension failure and pullout failure of reinforced earth structure have been discussed.