953 resultados para life cycle cost
Resumo:
A global archive of high-resolution (3-hourly, 0.58 latitude–longitude grid) window (11–12 mm) brightness temperature (Tb) data from multiple satellites is being developed by the European Union Cloud Archive User Service (CLAUS) project. It has been used to construct a climatology of the diurnal cycle in convection, cloudiness, and surface temperature for all regions of the Tropics. An example of the application of the climatology to the evaluation of the climate version of the U.K. Met. Office Unified Model (UM), version HadAM3, is presented. The characteristics of the diurnal cycle described by the CLAUS data agree with previous observational studies, demonstrating the universality of the characteristics of the diurnal cycle for land versus ocean, clear sky versus convective regimes. It is shown that oceanic deep convection tends to reach its maximum in the early morning. Continental convection generally peaks in the evening, although there are interesting regional variations, indicative of the effects of complex land–sea and mountain–valley breezes, as well as the life cycle of mesoscale convective systems. A striking result from the analysis of the CLAUS data has been the extent to which the strong diurnal signal over land is spread out over the adjacent oceans, probably through gravity waves of varying depths. These coherent signals can be seen for several hundred kilometers and in some instances, such as over the Bay of Bengal, can lead to substantial diurnal variations in convection and precipitation. The example of the use of the CLAUS data in the evaluation of the Met. Office UM has demonstrated that the model has considerable difficulty in capturing the observed phase of the diurnal cycle in convection, which suggests some fundamental difficulties in the model’s physical parameterizations. Analysis of the diurnal cycle represents a powerful tool for identifying and correcting model deficiencies.
Resumo:
Forest soils account for a large part of the stable carbon pool held in terrestrial ecosystems. Future levels of atmospheric CO2 are likely to increase C input into the soils through increased above- and below-ground production of forests. This increased input will result in greater sequestration of C only if the additional C enters stable pools. In this review, we compare current observations from four large-scale Free Air FACE Enrichment (FACE) experiments on forest ecosystems (EuroFACE, Aspen-FACE, Duke FACE and ORNL-FACE) and consider their predictive power for long-term C sequestration. At all sites, FACE increased fine root biomass, and in most cases higher fine root turnover resulted in higher C input into soil via root necromass. However, at all sites, soil CO2 efflux also increased in excess of the increased root necromass inputs. A mass balance calculation suggests that a large part of the stimulation of soil CO2 efflux may be due to increased root respiration. Given the duration of these experiments compared with the life cycle of a forest and the complexity of processes involved, it is not yet possible to predict whether elevated CO2 will result in increased C storage in forest soil.
Resumo:
Demands for thermal comfort, better indoor air quality together with lower environmental impacts have had ascending trends in the last decade. In many circumstances, these demands could not be fully covered through the soft approach of bioclimatic design like optimisation of the building orientation and internal layout. This is mostly because of the dense urban environment and building internal energy loads. In such cases, heating, ventilation, air-conditioning and refrigeration (HVAC&R) systems make a key role to fulfill the requirements of indoor environment. Therefore, it is required to select the most proper HVAC&R system. In this study, a robust decision making approach for HVAC&R system selection is proposed. Technical performance, economic aspect and environmental impacts of 36 permutations of primary and secondary systems are taken into account to choose the most proper HVAC&R system for a case study office building. The building is a representative for the dominant form of office buildings in the UK. Dynamic performance evaluation of HVAC&R alternatives using TRNSYS package together with life cycle energy cost analysis provides a reliable basis for decision making. Six scenarios broadly cover the decision makers' attitudes on HVAC&R system selection which are analysed through Analytical Hierarchy Process (AHP). One of the significant outcomes reveals that, despite both the higher energy demand and more investment requirements associated with compound heating, cooling and power system (CCHP); this system is one of the top ranked alternatives due to the lower energy cost and C02 emissions. The sensitivity analysis reveals that in all six scenarios, the first five top ranked alternatives are not changed. Finally, the proposed approach and the results could be used by researchers and designers especially in the early stages of a design process in which all involved bodies face the lack of time, information and tools for evaluation of a variety of systems.
Resumo:
The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.
Resumo:
A universal systems design process is specified, tested in a case study and evaluated. It links English narratives to numbers using a categorical language framework with mathematical mappings taking the place of conjunctions and numbers. The framework is a ring of English narrative words between 1 (option) and 360 (capital); beyond 360 the ring cycles again to 1. English narratives are shown to correspond to the field of fractional numbers. The process can enable the development, presentation and communication of complex narrative policy information among communities of any scale, on a software implementation known as the "ecoputer". The information is more accessible and comprehensive than that in conventional decision support, because: (1) it is expressed in narrative language; and (2) the narratives are expressed as compounds of words within the framework. Hence option generation is made more effective than in conventional decision support processes including Multiple Criteria Decision Analysis, Life Cycle Assessment and Cost-Benefit Analysis.The case study is of a participatory workshop in UK bioenergy project objectives and criteria, at which attributes were elicited in environmental, economic and social systems. From the attributes, the framework was used to derive consequences at a range of levels of precision; these are compared with the project objectives and criteria as set out in the Case for Support. The design process is to be supported by a social information manipulation, storage and retrieval system for numeric and verbal narratives attached to the "ecoputer". The "ecoputer" will have an integrated verbal and numeric operating system. Novel design source code language will assist the development of narrative policy. The utility of the program, including in the transition to sustainable development and in applications at both community micro-scale and policy macro-scale, is discussed from public, stakeholder, corporate, Governmental and regulatory perspectives.
Resumo:
In this paper, the Lorenz energy cycle over a limited area was applied for three cyclones with different origins and evolutions, where each of them was formed in an important cyclogenetic region near southeastern South America. The synoptic conditions and energetics were analyzed during each system`s life cycle and showed important relationships between their energy cycle and the evolution of their vertical structure. In the case of the weak baroclinic cyclone which formed on Brazil`s south-southeastern coast, the analysis showed that it originated through a midlevel cutoff low with contribution from barotropic instability. Its evolution would indicate potential transition to a hybrid system if the convective activity were stronger. The system that occurred in the La Plata River mouth had features of an oceanic bomb-type cyclogenesis and showed an important contribution from the available potential energy generation term through the latent heat release by the convection. Meanwhile, the system of the southern Argentina coast presented a classical baroclinic development of extratropical cyclogenesis in the energy cycle, from the wave amplification up to the final occlusion of the associated frontal system. These analyses revealed that the development of some cyclones that occur in eastern South America can present different mechanisms that are not related to the classical extratropical cyclogenesis.
Resumo:
Product verifications have become a cost-intensive and time-consuming aspect of modern electronics production, but with the onset of an ever-increasing miniaturisation, these aspects will become even more cumbersome. One may also go as far as to point out that certain precision assembly, such as within the biomedical sector, is legally bound to have 0 defects within production. Since miniaturisation and precision assembly will soon become a part of almost any product, the verifications phases of assembly need to be optimised in both functionality and cost. Another aspect relates to the stability and robustness of processes, a pre-requisite for flexibility. Furthermore, as the re-engineering cycle becomes ever more important, all information gathered within the ongoing process becomes vital. In view of these points, product, or process verification may be assumed to be an important and integral part of precision assembly. In this paper, product verification is defined as the process of determining whether or not the products, at a given phase in the life-cycle, fulfil the established specifications. Since the product is given its final form and function in the assembly, the product verification normally takes place somewhere in the assembly line which is the focus for this paper.
Resumo:
During the period of 1990-2002 US households experienced a dramatic wealth cycle, induced by a 369% appreciation in the value of real per capita liquid stock market assets followed by a 55% decline. However, consumer spending in real terms continued to rise throughout this period. Using data from 1990-2005, traditional life-cycle approaches to estimating macroeconomic wealth effects confront two puzzles: (i) econometric evidence of a stable cointegrating relationship among consumption, income, and wealth is weak at best; and (ii) life-cycle models that rely on aggregate measures of wealth cannot explain why consumption did not collapse when the value of stock market assets declined so dramatically. We address both puzzles by decomposing wealth according to the liquidity of household assets. We find that the significant appreciation in the value of real estate assets that occurred after the peak of the wealth cycle helped sustain consumer spending from 2001 to 2005.
Resumo:
This paper explores the distortions on the cost of education, associated with government policies and institutional factors, as an additional determinant of cross-country income differences. Agents are finitely lived and the model takes into account life-cycle features of human capital accumulation. There are two sectors, one producing goods and the other providing educational services. The model is calibrated and simulated for 89 economies. We find that human capital taxation has a relevant impact on incomes, which is amplified by its indirect effect on returns to physical capital. Life expectancy plays an important role in determining long-run output: the expansion of the population working life increases the present value of the flow of wages, which induces further human capital investment and raises incomes. Although in our simulations the largest gains are observed when productivity is equated across countries, changes in longevity and in the incentives to educational investment are too relevant to ignore.
Resumo:
This thesis is comprised of three chapters. The first article studies the determinants of the labor force participation of elderly American males and investigates the factors that may account for the changes in retirement between 1950 and 2000. We develop a life-cycle general equilibrium model with endogenous retirement that embeds Social Security legislation and Medicare. Individuals are ex ante heterogeneous with respect to their preferences for leisure and face uncertainty about labor productivity, health status and out-of-pocket medical expenses. The model is calibrated to the U.S. economy in 2000 and is able to reproduce very closely the retirement behavior of the American population. It reproduces the peaks in the distribution of Social Security applications at ages 62 and 65 and the observed facts that low earners and unhealthy individuals retire earlier. It also matches very closely the increase in retirement from 1950 to 2000. Changes in Social Security policy - which became much more generous - and the introduction of Medicare account for most of the expansion of retirement. In contrast, the isolated impact of the increase in longevity was a delaying of retirement. In the second article, I develop an overlapping generations model of criminal behavior, which extends prior research on crime by taking into account individuals' labor supply decisions and the stigma effect that affects convicted offenders, lowering their likelihood of employment. I use the model to guide a quantitative assessment of the determinants of crime and of a counterfactual experiment in which an income redistribution policy is thought as an alternative to greater law enforcement. The model economy considered in this paper is populated by heterogeneous agents who live for a realistic number of periods, have preferences over consumption and leisure, and differ in terms of their age, their skills as well as their employment shocks. In addition, savings may be precautionary and allow partial insurance against the labor income shocks. Because of the lack of full insurance, this model generates an endogenous distribution of wealth across consumers, enabling us to assess the welfare implications of the redistribution policy experiment. I calibrated the model using the US data for 1980 and then use the model to investigate the changes in criminality between 1980 and 1996. The main results that come out of this study are: 1) Law enforcement policy was the most important factor behind the fall in criminality in the period, while the increase in inequality was the most important single factor promoting crime; 2) Stigmatization is not a free-cost crime control policy; 3) Income redistribution can be a powerful alternative policy to fight crime. Finally, the third article studies the impact of HIV/AIDS on per capita income and education. It explores two channels from HIV/AIDS to income that have not been sufficiently stressed by the literature: the reduction of the incentives to study due to shorter expected longevity and the reduction of productivity of experienced workers. In the model individuals live for three periods, may get infected in the second period and with some probability die of Aids before reaching the third period of their life. Parents care for the welfare of the future generations so that they will maximize lifetime utility of their dynasty. The simulations predict that the most affected countries in Sub-Saharan Africa will be in the future, on average, thirty percent poorer than they would be without AIDS. Schooling will decline in some cases by forty percent. These figures are dramatically reduced with widespread medical treatment, as it increases the survival probability and productivity of infected individuals.
Resumo:
This thesis contains three chapters. The first chapter uses a general equilibrium framework to simulate and compare the long run effects of the Patient Protection and Affordable Care Act (PPACA) and of health care costs reduction policies on macroeconomic variables, government budget, and welfare of individuals. We found that all policies were able to reduce uninsured population, with the PPACA being more effective than cost reductions. The PPACA increased public deficit mainly due to the Medicaid expansion, forcing tax hikes. On the other hand, cost reductions alleviated the fiscal burden of public insurance, reducing public deficit and taxes. Regarding welfare effects, the PPACA as a whole and cost reductions are welfare improving. High welfare gains would be achieved if the U.S. medical costs followed the same trend of OECD countries. Besides, feasible cost reductions are more welfare improving than most of the PPACA components, proving to be a good alternative. The second chapter documents that life cycle general equilibrium models with heterogeneous agents have a very hard time reproducing the American wealth distribution. A common assumption made in this literature is that all young adults enter the economy with no initial assets. In this chapter, we relax this assumption – not supported by the data – and evaluate the ability of an otherwise standard life cycle model to account for the U.S. wealth inequality. The new feature of the model is that agents enter the economy with assets drawn from an initial distribution of assets. We found that heterogeneity with respect to initial wealth is key for this class of models to replicate the data. According to our results, American inequality can be explained almost entirely by the fact that some individuals are lucky enough to be born into wealth, while others are born with few or no assets. The third chapter documents that a common assumption adopted in life cycle general equilibrium models is that the population is stable at steady state, that is, its relative age distribution becomes constant over time. An open question is whether the demographic assumptions commonly adopted in these models in fact imply that the population becomes stable. In this chapter we prove the existence of a stable population in a demographic environment where both the age-specific mortality rates and the population growth rate are constant over time, the setup commonly adopted in life cycle general equilibrium models. Hence, the stability of the population do not need to be taken as assumption in these models.
Resumo:
Cementing operations may occur at various stages of the life cycle of an oil well since its construction until its definitive abandonment. There are some situations in which the interest zones are depleted or have low fracture pressure. In such cases, the adoption of lowdensity cement slurries is an efficient solution. To this end, there are basically three ways to reduce the density of cement slurries: using microspheres, water extending additives or foamed cement. The objective of this study is to formulate, to study and to characterize lowdensity foamed cement, using an air entrainment surfactant with vermiculite or diatomite as water extenders and stabilizers. The methodology consists on preparation and evaluation of the slurries under the American Petroleum Institute (API) and the Brazilian Association of Technical Standards (ABNT) guidelines. Based on calculated densities between 13 and 15 ppg (1.559 and 1.799 g/cm3), the slurries were prepared with fixed surfactant concentration, varying the concentrations of vermiculite and diatomite and were compared with the base slurries. The results of plastic viscosity, yield point and gel strength and the compressive strength for 24 h showed that the slurries presented suitable rheology and mechanical strength for cementing operations in oil wells, and had their densities reduced between 8.40 and 11.89 ppg (1.007 and 1.426 g/cm3). The conclusion is that is possible, under atmospheric conditions, to obtain light weighted foamed cement slurries with satisfactory rheological and mechanical properties by means of air entrainment and mineral additions with extenders and stabilizers effects. The slurries have great potential for cementing operations; applicability in deep wells, in low fracture gradient formations and in depleted zones and bring cost savings by reducing the cementing consumption
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work presents the research carried through in the industrial segment of confection of clothes of the Great Natal whose objective is to show the profile, enterprise and technological management as also the use of simultaneous engineering in the development of products. The research approaches two studies. The first one presents the current picture of the companies, synthesized through twelve variable. As, through fifteen variable it shows to the level of use of Simultaneous Engineering in the Development of Products and its amplitude in relation to the Integrated Management using tools CAD, PDM and ERP (Computer Aided Design, Product Management Date, Enterprise Resource Planning). The integration of these systems acts aiming the reduction of the cost and the development time of products. The reached results indicate that simultaneous engineering is a competitive advantage and becomes possible: to reduce the life cycle of the product, to rationalize the resources, to incorporate one high standard of the quality to the process and product as well as to personalize the product to take care of the global market. It is important to note that this work also is considered to contribute for the better understanding of the real companies situation of confection located at the Great Natal and its role in the economy of the State of the Rio Grande do Norte
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)