899 resultados para information bottleneck method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artifact selection decisions typically involve the selection of one from a number of possible/candidate options (decision alternatives). In order to support such decisions, it is important to identify and recognize relevant key issues of problem solving and decision making (Albers, 1996; Harris, 1998a, 1998b; Jacobs & Holten, 1995; Loch & Conger, 1996; Rumble, 1991; Sauter, 1999; Simon, 1986). Sauter classifies four problem solving/decision making styles: (1) left-brain style, (2) right-brain style, (3) accommodating, and (4) integrated (Sauter, 1999). The left-brain style employs analytical and quantitative techniques and relies on rational and logical reasoning. In an effort to achieve predictability and minimize uncertainty, problems are explicitly defined, solution methods are determined, orderly information searches are conducted, and analysis is increasingly refined. Left-brain style decision making works best when it is possible to predict/control, measure, and quantify all relevant variables, and when information is complete. In direct contrast, right-brain style decision making is based on intuitive techniques—it places more emphasis on feelings than facts. Accommodating decision makers use their non-dominant style when they realize that it will work best in a given situation. Lastly, integrated style decision makers are able to combine the left- and right-brain styles—they use analytical processes to filter information and intuition to contend with uncertainty and complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inverse problem of determining a spacewise-dependent heat source for the parabolic heat equation using the usual conditions of the direct problem and information from one supplementary temperature measurement at a given instant of time is studied. This spacewise-dependent temperature measurement ensures that this inverse problem has a unique solution, but the solution is unstable and hence the problem is ill-posed. We propose a variational conjugate gradient-type iterative algorithm for the stable reconstruction of the heat source based on a sequence of well-posed direct problems for the parabolic heat equation which are solved at each iteration step using the boundary element method. The instability is overcome by stopping the iterative procedure at the first iteration for which the discrepancy principle is satisfied. Numerical results are presented which have the input measured data perturbed by increasing amounts of random noise. The numerical results show that the proposed procedure yields stable and accurate numerical approximations after only a few iterations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of having a fixed differential-group delay term in the coarse-step method results in a periodic pattern in the autocorrelation function. We solve this problem by inserting a varying DGD term at each integration step, according to a Gaussian distribution. Simulation results are given to illustrate the phenomenon and provide some evidence, about its statistical nature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we proposed a new method using long digital straight segments (LDSSs) for fingerprint recognition based on such a discovery that LDSSs in fingerprints can accurately characterize the global structure of fingerprints. Different from the estimation of orientation using the slope of the straight segments, the length of LDSSs provides a measure for stability of the estimated orientation. In addition, each digital straight segment can be represented by four parameters: x-coordinate, y-coordinate, slope and length. As a result, only about 600 bytes are needed to store all the parameters of LDSSs of a fingerprint, as is much less than the storage orientation field needs. Finally, the LDSSs can well capture the structural information of local regions. Consequently, LDSSs are more feasible to apply to the matching process than orientation fields. The experiments conducted on fingerprint databases FVC2002 DB3a and DB4a show that our method is effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subunit vaccine discovery is an accepted clinical priority. The empirical approach is time- and labor-consuming and can often end in failure. Rational information-driven approaches can overcome these limitations in a fast and efficient manner. However, informatics solutions require reliable algorithms for antigen identification. All known algorithms use sequence similarity to identify antigens. However, antigenicity may be encoded subtly in a sequence and may not be directly identifiable by sequence alignment. We propose a new alignment-independent method for antigen recognition based on the principal chemical properties of protein amino acid sequences. The method is tested by cross-validation on a training set of bacterial antigens and external validation on a test set of known antigens. The prediction accuracy is 83% for the cross-validation and 80% for the external test set. Our approach is accurate and robust, and provides a potent tool for the in silico discovery of medically relevant subunit vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated information transmission in an array of threshold units that have signal-dependent noise and a common input signal. We demonstrate a phenomenon similar to stochastic resonance and suprathreshold stochastic resonance with additive noise and show that information transmission can be enhanced by a nonzero level of noise. By comparing system performance to one with additive noise we also demonstrate that the information transmission of weak signals is significantly better with signal-dependent noise. Indeed, information rates are not compromised even for arbitrary small input signals. Furthermore, by an appropriate selection of parameters, we observe that the information can be made to be (almost) independent of the level of the noise, thus providing a robust method of transmitting information in the presence of noise. These result could imply that the ability of hair cells to code and transmit sensory information in biological sensory systems is not limited by the level of signal-dependent noise. © 2007 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most existing color-based tracking algorithms utilize the statistical color information of the object as the tracking clues, without maintaining the spatial structure within a single chromatic image. Recently, the researches on the multilinear algebra provide the possibility to hold the spatial structural relationship in a representation of the image ensembles. In this paper, a third-order color tensor is constructed to represent the object to be tracked. Considering the influence of the environment changing on the tracking, the biased discriminant analysis (BDA) is extended to the tensor biased discriminant analysis (TBDA) for distinguishing the object from the background. At the same time, an incremental scheme for the TBDA is developed for the tensor biased discriminant subspace online learning, which can be used to adapt to the appearance variant of both the object and background. The experimental results show that the proposed method can track objects precisely undergoing large pose, scale and lighting changes, as well as partial occlusion. © 2009 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The method of case-based reasoning for a solution of problems of real-time diagnostics and forecasting in intelligent decision support systems (IDSS) is considered. Special attention is drawn to case library structure for real-time IDSS (RT IDSS) and algorithm of k-nearest neighbors type. This work was supported by RFBR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The basic matrixes method is suggested for the Leontief model analysis (LM) with some of its components indistinctly given. LM can be construed as a forecast task of product’s expenses-output on the basis of the known statistic information at indistinctly given several elements’ meanings of technological matrix, restriction vector and variables’ limits. Elements of technological matrix, right parts of restriction vector LM can occur as functions of some arguments. In this case the task’s dynamic analog occurs. LM essential complication lies in inclusion of variables restriction and criterion function in it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper is to explain the notion of clustering and a concrete clustering method- agglomerative hierarchical clustering algorithm. It shows how a data mining method like clustering can be applied to the analysis of stocks, traded on the Bulgarian Stock Exchange in order to identify similar temporal behavior of the traded stocks. This problem is solved with the aid of a data mining tool that is called XLMiner™ for Microsoft Excel Office.