863 resultados para implicit functions
Resumo:
We consider conjugate-gradient like methods for solving block symmetric indefinite linear systems that arise from saddle-point problems or, in particular, regularizations thereof. Such methods require preconditioners that preserve certain sub-blocks from the original systems but allow considerable flexibility for the remaining blocks. We construct a number of families of implicit factorizations that are capable of reproducing the required sub-blocks and (some) of the remainder. These generalize known implicit factorizations for the unregularized case. Improved eigenvalue clustering is possible if additionally some of the noncrucial blocks are reproduced. Numerical experiments confirm that these implicit-factorization preconditioners can be very effective in practice.
Resumo:
We study generalised prime systems P (1 < p(1) <= p(2) <= ..., with p(j) is an element of R tending to infinity) and the associated Beurling zeta function zeta p(s) = Pi(infinity)(j=1)(1 - p(j)(-s))(-1). Under appropriate assumptions, we establish various analytic properties of zeta p(s), including its analytic continuation, and we characterise the existence of a suitable generalised functional equation. In particular, we examine the relationship between a counterpart of the Prime Number Theorem (with error term) and the properties of the analytic continuation of zeta p(s). Further we study 'well-behaved' g-prime systems, namely, systems for which both the prime and integer counting function are asymptotically well-behaved. Finally, we show that there exists a natural correspondence between generalised prime systems and suitable orders on N-2. Some of the above results are relevant to the second author's theory of 'fractal membranes', whose spectral partition functions are given by Beurling-type zeta functions, as well as to joint work of that author and R. Nest on zeta functions attached to quasicrystals.