957 resultados para hyperbranched poly-l-lysine
Resumo:
Miscibility and phase separation in the blends of phenolphthalein poly(aryl ether ketone) (PPAEK) and poly(ethylene oxide) (PEO) were investigated by means of differential scanning calorimetry (DSC). The PPAEK/PEO blends prepared by solution casting from N,N-dimethylformamide (DMF) displayed single composition-dependent glass transition temperatures (T-g), intermediate between those of the pure components, suggesting that the blend system is miscible in the amorphous state at all compositions. All the blends underwent phase separation at higher temperatures and the system exhibited a lower critical solution temperature (LCST) behavior. A step-heating thermal analysis was designed to determine the phase boundaries with DSC. The significant changes in the thermal properties of blends were utilized to judge the mixing status for the blends and the phase diagram was thus established. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Studies have demonstrated that polymeric biomaterials have the potential to support osteoblast growth and development for bone tissue repair. Poly( beta- hydroxybutyrate- co- beta- hydroxyvalerate) ( PHBV), a bioabsorbable, biocompatible polyhydroxy acid polymer, is an excellent candidate that, as yet, has not been extensively investigated for this purpose. As such, we examined the attachment characteristics, self- renewal capacity, and osteogenic potential of osteoblast- like cells ( MC3T3- E1 S14) when cultured on PHBV films compared with tissue culture polystyrene ( TCP). Cells were assayed over 2 weeks and examined for changes in morphology, attachment, number and proliferation status, alkaline phosphatase ( ALP) activity, calcium accumulation, nodule formation, and the expression of osteogenic genes. We found that these spindle- shaped MC3T3- E1 S14 cells made cell - cell and cell - substrate contact. Time- dependent cell attachment was shown to be accelerated on PHBV compared with collagen and laminin, but delayed compared with TCP and fibronectin. Cell number and the expression of ALP, osteopontin, and pro- collagen alpha 1( I) mRNA were comparable for cells grown on PHBV and TCP, with all these markers increasing over time. This demonstrates the ability of PHBV to support osteoblast cell function. However, a lag was observed for cells on PHBV in comparison with those on TCP for proliferation, ALP activity, and cbfa- 1 mRNA expression. In addition, we observed a reduction in total calcium accumulation, nodule formation, and osteocalcin mRNA expression. It is possible that this cellular response is a consequence of the contrasting surface properties of PHBV and TCP. The PHBV substrate used was rougher and more hydrophobic than TCP. Although further substrate analysis is required, we conclude that this polymer is a suitable candidate for the continued development as a biomaterial for bone tissue engineering.
Resumo:
The present study was carried out to determine the ileal digestibility of Arg and Lys in acutely heatstressed broilers using diets varying in Arg:Lys ratio, NaCl concentration, and Met Source. Male broilers were maintained at 22degreesC from 21 to 33 d of age and then at 32degreesC from 33 to 38 d of age. From 28 to 38 d of age, birds were fed a diet with an Arg:Lys ratio of 1.05 and 3 g of supplemental NaCl/kg of diet with or without L-arg free base to increase the Arg:Lys to 1.35, and with or without 3 g/kg of additional NaCl. Methionine was supplied as equimolar amounts of DL-Met or 2-hydroxy-4-(methylthio)-butanoic acid in a 2 x 2 x 2 design. At 38 d of age, digesta were collected from the terminal ileum, and amino acid analyses were conducted on feed and digesta samples and compared with acid-insoluble ash (dietary celite) to calculate the apparent ileal digestibilities of Lys and Arg. Increasing the NaCl concentration and the presence of HMB significantly decreased the digestibility of both Arg and Lys, whereas increasing the Arg:Lys ratio increased the digestibility of only Arg but did increase BW gain (P = 0.08). An interaction between dietary NaCl and Arg:Lys ratio as well as the 3-way interaction suggested that dietary NaCl could affect the apparent ileal digestibility of Arg and Lys at certain Arg:Lys ratios and the response may be influenced by the Met source.
Resumo:
We herein report the synthesis of organic-inorganic hybrid poly(methyl methacrylate) containing 1 polyhedral oligosilsesquioxanes. Octakis(3-hydroxypropyldimethylsiloxy)octasilsesquioxane (OHPS) was synthesized from octakis(hydridodimethylsiloxy)octasilsesquioxane [Si8O12(OSiMe2H)(8), Q(8)M(8)(H)] following literature procedures. Octakis(tnethacryloxypropyldimethylsiloxy) octasilsesquioxane (OMPS) was synthesized via the reaction of methacryloyl chloride or methacrylic acid anhydride with OHPS, with the latter giving improved purity. Polymerization of OMPS with methyl inethacrylate using a dibenzoylperoxide initiator gave a highly cross-linked polymer. Characterization of the polymer was performed using Fourier transform IR spectroscopy, Si-29 NMR, differential scanning calorimetry, thermogravimetric analysis, atomic force microscopy, and transmission electron microscopy with energy-dispersive X-ray analysis. The polymer was found to be largely homogeneous. Increasing the OMPS concentration in the polymer gave increased decomposition and glass transition temperatures.
Resumo:
Poly-beta-hydroxyalkanoate (PHA) is a polymer commonly used in carbon and energy storage for many different bacterial cells. Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), store PHA anaerobically through metabolism of carbon substrates such as acetate and propionate. Although poly-beta-hydroxybutyrate (PHB)and poly-beta-hydroxyvalerate (PHV) are commonly quantified using a previously developed gas chromatography (GC) method, poly-beta-hydroxy-2-methyl valerate (PH2MV) is seldom quantified despite the fact that it has been shown to be a key PHA fraction produced when PAOs or GAOs metabolise propionate. This paper presents two GC-based methods modified for extraction and quantification of PHB, PHV and PH2MV from enhanced biological phosphorus removal (EBPR) systems. For the extraction Of PHB and PHV from acetate fed PAO and GAO cultures, a 3% sulfuric acid concentration and a 2-20 h digestion time is recommended, while a 10% sulfuric acid solution digested for 20 h is recommended for PHV and PH2MV analysis from propionate fed EBPR systems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The in vitro and in vivo degradation properties of poly(lactic-co-glycolic acid) (PLGA) scaffolds produced by two different technologies-therm ally induced phase separation (TIPS), and solvent casting and particulate leaching (SCPL) were compared. Over 6 weeks, in vitro degradation produced changes in SCPL scaffold dimension, mass, internal architecture and mechanical properties. TIPS scaffolds produced far less changes in these parameters providing significant advantages over SCPL. In vivo results were based on a microsurgically created arteriovenous (AV) loop sandwiched between two TIPS scaffolds placed in a polycarbonate chamber under rat groin skin. Histologically, a predominant foreign body giant cell response and reduced vascularity was evident in tissue ingrowth between 2 and 8 weeks in TIPS scaffolds. Tissue death occurred at 8 weeks in the smallest pores. Morphometric comparison of TIPS and SCPL scaffolds indicated slightly better tissue ingrowth but greater loss of scaffold structure in SCPL scaffolds. Although advantageous in vitro, large surface area:volume ratios and varying pore sizes in PLGA TIPS scaffolds mean that effective in vivo (AV loop) utilization will only be achieved if the foreign body response can be significantly reduced so as to allow successful vascularisation, and hence sustained tissue growth, in pores less than 300 mu m. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Phase diagrams of the pseudoternary systems ethyloleate, polyoxyethylene 20 sorbitan mono-oleate/sorbitan monolaurate and propylene glycol with and without butanol as a co-surfactant were prepared. Areas containing optically isotropic, one-phase systems were identified and samples therein designated as droplet, bicontinuous or solution type microemulsions using conductivity, viscosity and self-diffusion NMR. Nanoparticles were prepared by polymerization of selected microemulsions with ethyl-2-cyanoacrylate and the morphology of the particles was investigated. Addition of monomer to all types of microemulsions led to the formation of nanoparticles, which had an average size of 244 +/- 25 nm, an average polydispersity index of 0.15 +/- 0.04 and a zeta-potential of -17 +/- 3 mV. The formation of particles from water-free microemulsions of different types is surprising, particularly considering that polymerization is expected to occur at a water-oil interface by base-catalysed polymerization. It would appear that propylene glycol is sufficiently nucleophilic to initiate the polymerization. The use of water-free microemulsions as templates for the preparation of poly (alkylcyanoacrylate) nanoparticles opens up interesting opportunities for the encapsulation of bioactives which do not have suitable properties for encapsulation on the basis of water-containing microemulsions.
Resumo:
Thermosetting blends of an aliphatic epoxy resin and a hydroxyl-functionalized hyperbranched polymer (HBP), aliphatic hyperbranched polyester Boltorn H40, were prepared using 4,4'-diaminodiphenylmethane (DDM) as the curing agent. The phase behavior and morphology of the DDM-cured epoxy/HBP blends with HBP content up to 40 wt% were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The cured epoxy/HBP blends are immiscible and exhibit two separate glass transitions, as revealed by DMA. The SEM observation showed that there exist two phases in the cured blends, which is an epoxy-rich phase and an HBP-rich phase, which is responsible for the two separate glass transitions. The phase morphology was observed to be dependent on the blend composition. For the blends with HBP content up to 10 wt%, discrete HBP domains are dispersed in the continuous cured epoxy matrix, whereas the cured blend with 40 wt% HBP exhibits a combined morphology of connected globules and bicominuous phase structure. Porous epoxy thermosets with continuous open structures on the order of 100-300 nm were formed after the HBP-rich phase was extracted with solvent from the cured blend with 40 wt% HBP. The DSC study showed that the curing rate is not obviously affected in the epoxy/HBP blends with HBP content up to 40 wt %. The activation energy values obtained are not remarkably changed in the blends; the addition of HBP to epoxy resin thus does not change the mechanism of cure reaction of epoxy resin with DDM. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Amine functionalities were introduced onto the surface of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) films by applying radio frequency ammonia plasma treatment and wet ethylenediamine treatment. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS) for chemical composition and Raman microspectroscopy for the spatial distribution of the chemical moieties. The relative amount of amine functionalities introduced onto the PHBV surface was determined by exposing the treated films to the vapor of trifluoromethylbenzaldehyde (TFBA) prior to XPS analysis. The highest amount of amino groups on the PHBV surface could be introduced by use of ammonia plasma at short treatment times of 5 and 10 s, but no effect of plasma power within the range of 2.5-20 W was observed. Ethylenediamine treatment yielded fewer surface amino groups, and in addition an increase in crystallinity as well as degradation of PHBV was evident from Fourier transform infrared spectroscopy. Raman maps showed that the coverage of amino groups on the PHBV surfaces was patchy with large areas having no amine functionalities.