924 resultados para human-populations
Resumo:
The hair follicle cycle successively goes through the anagen, catagen, telogen, and latency phases, which correspond, respectively, to hair growth, arrest, shedding, and absence before a new anagen phase is initiated. Experimental observations collected over a period of 14 years in a group of 10 male volunteers, alopecic and nonalopecic, allowed us to determine the characteristics of scalp hair follicle cycles. On the basis of these observations, we propose a follicular automaton model to simulate the dynamics of human hair cycles. The automaton model is defined by a set of rules that govern the stochastic transitions of each follicle between the successive states anagen, telogen, and latency, and the subsequent return to anagen. The transitions occur independently for each follicle, after time intervals given stochastically by a distribution characterized by a mean and a variance. The follicular automaton model accounts both for the dynamical transitions observed in a single follicle and for the behavior of an ensemble of independently cycling follicles. Thus, the model successfully reproduces the evolution of the fractions of follicle populations in each of the three phases, which fluctuate around steady-state or slowly drifting values. We apply the follicular automaton model to the study of spatial patterns of follicular growth that result from a spatially heterogeneous distribution of parameters such as the mean duration of anagen phase. When considering that follicles die or miniaturize after going through a critical number of successive cycles, the model can reproduce the evolution to hair patterns similar to well known types of diffuse or androgenetic alopecia.
Resumo:
Accurate and automated methods for measuring the thickness of human cerebral cortex could provide powerful tools for diagnosing and studying a variety of neurodegenerative and psychiatric disorders. Manual methods for estimating cortical thickness from neuroimaging data are labor intensive, requiring several days of effort by a trained anatomist. Furthermore, the highly folded nature of the cortex is problematic for manual techniques, frequently resulting in measurement errors in regions in which the cortical surface is not perpendicular to any of the cardinal axes. As a consequence, it has been impractical to obtain accurate thickness estimates for the entire cortex in individual subjects, or group statistics for patient or control populations. Here, we present an automated method for accurately measuring the thickness of the cerebral cortex across the entire brain and for generating cross-subject statistics in a coordinate system based on cortical anatomy. The intersubject standard deviation of the thickness measures is shown to be less than 0.5 mm, implying the ability to detect focal atrophy in small populations or even individual subjects. The reliability and accuracy of this new method are assessed by within-subject test–retest studies, as well as by comparison of cross-subject regional thickness measures with published values.
Resumo:
In an effort to understand the unusual cytogenetic damage earlier encountered in the Yanomama Indians, plasma samples from 425 Amerindians representing 14 tribes have been tested for hemagglutination inhibition antibodies to the human JC polyoma virus and from 369 Amerinds from 13 tribes for hemagglutination inhibition antibodies to the human BK polyoma virus. There is for both viruses highly significant heterogeneity between tribes for the prevalence of serum antibody titers ≥1/40, the pattern of infection suggesting that these two viruses only relatively recently have been introduced into some of these tribes. Some of these samples, from populations with no known exposure to the simian polyoma virus SV40, also were tested for antibodies to this virus by using an immunospot assay. In contrast to the findings of Brown et al. (Brown, P., Tsai, T. & Gajdusek, D. C. (1975) Am. J. Epidemiol. 102, 331–340), none of the samples was found to possess antibodies to SV40. In addition, no significant titers to SV40 were found in a sample of 97 Japanese adults, many of whom had been found to exhibit elevated titers to the JC and BK viruses. This study thus suggests that these human sera contain significant antibody titers to the human polyoma viruses JC and BK but do not appear to contain either cross-reactive antibodies to SV40 or primary antibodies resulting from SV40 infection.
Resumo:
ALFRED (the ALelle FREquency Database) is designed to store and disseminate frequencies of alleles at human polymorphic sites for multiple populations, primarily for the population genetics and molecular anthropology communities. Currently ALFRED has information on over 180 polymorphic sites for more than 70 populations. Since our initial release of the database we have focussed on increasing the quantity and quality of data, making reciprocal links between ALFRED and other related databases, and providing useful tools to make the data more comprehensible to the end user. ALFRED is accessible from the Kidd Lab home page (http://info.med.yale.edu/genetics/kkidd/) or from ALFRED directly (http://alfred.med.yale.edu/alfred/index.asp).
Resumo:
Near infrared diffuse optical spectroscopy and diffuse optical imaging are promising methods that eventually may enhance or replace existing technologies for breast cancer screening and diagnosis. These techniques are based on highly sensitive, quantitative measurements of optical and functional contrast between healthy and diseased tissue. In this study, we examine whether changes in breast physiology caused by exogenous hormones, aging, and fluctuations during the menstrual cycle result in significant alterations in breast tissue optical contrast. A noninvasive quantitative diffuse optical spectroscopy technique, frequency-domain photon migration, was used. Measurements were performed on 14 volunteer subjects by using a hand-held probe. Intrinsic tissue absorption and reduced scattering parameters were calculated from frequency-domain photon migration data. Wavelength-dependent absorption (at 674, 803, 849, and 956 nm) was used to determine tissue concentration of oxyhemoglobin, deoxyhemoglobin, total hemoglobin, tissue hemoglobin oxygen saturation, and bulk water content. Results show significant and dramatic differences in optical properties between menopausal states. Average premenopausal intrinsic tissue absorption and reduced scattering values at each wavelength are 2.5- to 3-fold higher and 16–28% greater, respectively, than absorption and scattering for postmenopausal subjects. Absorption and scattering properties for women using hormone replacement therapy are intermediate between premenopausal and postmenopausal populations. Physiological properties show differences in mean total hemoglobin (7.0 μM, 11.8 μM, and 19.2 μM) and water concentration relative to pure water (10.9%, 15.3%, and 27.3%) for postmenopausal, hormone replacement therapy, and premenopausal subjects, respectively. Because of their unique, quantitative information content, diffuse optical methods may play an important role in breast diagnostics and improving our understanding of breast disease.
Resumo:
The life history of Candida albicans presents an enigma: this species is thought to be exclusively asexual, yet strains show extensive phenotypic variation. To address the population genetics of C. albicans, we developed a genetic typing method for codominant single-locus markers by screening randomly amplified DNA for single-strand conformation polymorphisms. DNA fragments amplified by arbitrary primers were initially screened for single-strand conformation polymorphisms and later sequenced using locus-specific primers. A total of 12 single base mutations and insertions were detected from six out of eight PCR fragments. Patterns of sequence-level polymorphism observed for individual strains detected considerable heterozygosity at the DNA sequence level, supporting the view that most C. albicans strains are diploid. Population genetic analyses of 52 natural isolates from Duke University Medical Center provide evidence for both clonality and recombination in C. albicans. Evidence for clonality is supported by the presence of several overrepresented genotypes, as well as by deviation of genotypic frequencies from random (Hardy-Weinberg) expectations. However, tests for nonrandom association of alleles across loci reveal less evidence for linkage disequilibrium than expected for strictly clonal populations. Although C. albicans populations are primarily clonal, evidence for recombination suggests that sexual reproduction or some other form of genetic exchange occurs in this species.
Resumo:
The low level of amphotropic retrovirus-mediated gene transfer into human hematopoietic stem cells (HSC) has been a major impediment to gene therapy for hematopoietic diseases. In the present study, we have examined amphotropic retrovirus receptor (amphoR) and ecotropic retrovirus receptor mRNA expression in highly purified populations of mouse and human HSC. Murine HSC with low to undetectable levels of amphoR mRNA and relatively high levels of ecotropic retrovirus receptor mRNA were studied. When these HSC were analyzed simultaneously for ecotropic and amphotropic retrovirus transduction, ecotropic provirus sequences were detected in 10 of 13 long-term repopulated animals, while amphotropic proviral sequences were detected in only one recipient. A second distinct population of murine HSC were isolated that express 3-fold higher levels of amphoR mRNA. When these HSC were analyzed simultaneously for ecotropic and amphotropic retrovirus transduction, 11 of 11 repopulated mice contained ecotropic provirus and 6 of 11 contained amphotropic provirus sequences, a significant increase in the amphotropic retrovirus transduction (P = 0.018). These results indicate that, among the heterogeneous populations of HSC present in adult mouse bone marrow, the subpopulation with the highest level of amphoR mRNA is more efficiently transduced by amphotropic retrovirus. In a related study, we found low levels of human amphoR mRNA in purified populations of human HSC (CD34+ CD38-) and higher levels in committed progenitor cells (CD34+ CD38+). We conclude that the amphoR mRNA level in HSC correlates with amphotropic retrovirus transduction efficiency.
Resumo:
Increased 4N (G2/tetraploid) cell populations have been postulated to be genetically unstable intermediates in the progression to many cancers, but the mechanism by which they develop and their relationship to instability have been difficult to investigate in humans in vivo. Barrett's esophagus is an excellent model system in which to investigate the order in which genetic and cell cycle abnormalities develop relative to each other during human neoplastic progression. Neoplastic progression in Barrett's esophagus is characterized by inactivation of the p53 gene, the development of increased 4N (G2/tetraploid) cell fractions, and the appearance of aneuploid cell populations. We investigated the hypothesis that patients whose biopsies have increased 4N (G2/tetraploid) cell fractions are predisposed to progression to aneuploidy and determined the relationship between inactivation of p53 and the development of 4N abnormalities in Barrett's epithelium. Our results indicate that increased 4N (G2/tetraploid) populations predict progression to aneuploidy and that the development of 4N abnormalities is interdependent with inactivation of the p53 gene in Barrett's esophagus in vivo.
Resumo:
Kaposi sarcoma (KS) is the leading neoplasm of HIV-infected patients and is also found in several HIV-negative populations. Recently, DNA sequences from a novel herpesvirus, termed KS-associated herpesvirus (KSHV), or human herpesvirus 8 (HHV-8) have been identified within KS tissue from both HIV-positive and HIV-negative cases; infection with this agent has been proposed as a possible factor in the etiology or pathogenesis of the tumor. Here we have examined the pattern of KSHV/HHV-8 gene expression in KS and find it to be highly restricted. We identify and characterize two small transcripts that represent the bulk of the virus-specific RNA transcribed from over 120 kb of the KSHV genome in infected cells. One transcript is predicted to encode a small membrane protein; the other is an unusual polyadenylylated RNA that accumulates in the nucleus to high copy number. This pattern of viral gene expression suggests that most infected cells in KS are latently infected, with lytic viral replication likely restricted to a much smaller subpopulation of cells. These findings have implications for the therapeutic utility of currently available antiviral drugs targeted against the lytic replication cycle.
Resumo:
Gene transduction of pluripotent human hematopoietic stem cells (HSCs) is necessary for successful gene therapy of genetic disorders involving hematolymphoid cells. Evidence for transduction of pluripotent HSCs can be deduced from the demonstration of a retroviral vector integrated into the same cellular chromosomal DNA site in myeloid and lymphoid cells descended from a common HSC precursor. CD34+ progenitors from human bone marrow and mobilized peripheral blood were transduced by retroviral vectors and used for long-term engraftment in immune-deficient (beige/nude/XIS) mice. Human lymphoid and myeloid populations were recovered from the marrow of the mice after 7-11 months, and individual human granulocyte-macrophage and T-cell clones were isolated and expanded ex vivo. Inverse PCR from the retroviral long terminal repeat into the flanking genomic DNA was performed on each sorted cell population. The recovered cellular DNA segments that flanked proviral integrants were sequenced to confirm identity. Three mice were found (of 24 informative mice) to contain human lymphoid and myeloid populations with identical proviral integration sites, confirming that pluripotent human HSCs had been transduced.
Resumo:
Hydroxyl radical damage in metastatic tumor DNA was elucidated in women with breast cancer, and a comparison was made with nonmetastatic tumor DNA. The damage was identified by using statistical models of modified base and Fourier transform-infrared spectral data. The modified base models revealed a greater than 2-fold increase in hydroxyl radical damage in the metastatic tumor DNA compared with the nonmetastatic tumor DNA. The metastatic tumor DNA also exhibited substantially greater base diversity than the nonmetastatic DNA, and a progression of radical-induced base damage was found to be associated with the growth of metastatic tumors. A three-dimensional plot of principal components from factor analysis, derived from infrared spectral data, also showed that the metastatic tumor DNA was substantially more diverse than the tightly grouped nonmetastatic tumor DNA. These cohesive, independently derived findings suggest that the hydroxyl radical generates DNA phenotypes with various metastatic potentials that likely contribute to the diverse physiological properties and heterogeneity characteristic of metastatic cell populations.
Resumo:
A major goal of experimental and clinical hematology is the identification of mechanisms and conditions that support the expansion of transplantable hematopoietic stem cells. In normal marrow, such cells appear to be identical to (or represent a subset of) a population referred to as long-term-culture-initiating cells (LTC-ICs) so-named because of their ability to produce colony-forming cell (CFC) progeny for > or = 5 weeks when cocultured with stromal fibroblasts. Some expansion of LTC-ICs in vitro has recently been described, but identification of the factors required and whether LTC-IC self-renewal divisions are involved have remained unresolved issues. To address these issues, we examined the maintenance and/or generation of LTC-ICs from single CD34+ CD38- cells cultured for variable periods under different culture conditions. Analysis of the progeny obtained from cultures containing a feeder layer of murine fibroblasts engineered to produce steel factor, interleukin (IL)-3, and granulocyte colony-stimulating factor showed that approximately 20% of the input LTC-ICs (representing approximately 2% of the original CD34+ CD38- cells) executed self-renewal divisions within a 6-week period. Incubation of the same CD34+ CD38- starting populations as single cells in a defined (serum free) liquid medium supplemented with Flt-3 ligand, steel factor, IL-3, IL-6, granulocyte colony-stimulating factor, and nerve growth factor resulted in the proliferation of initial cells to produce clones of from 4 to 1000 cells within 10 days, approximately 40% of which included > or = 1 LTC-IC. In contrast, in similar cultures containing methylcellulose, input LTC-ICs appeared to persist but not divide. Overall the LTC-IC expansion in the liquid cultures was 30-fold in the first 10 days and 50-fold by the end of another 1-3 weeks. Documentation of human LTC-IC self-renewal in vitro and identification of defined conditions that permit their extensive and rapid amplification should facilitate analysis of the molecular mechanisms underlying these processes and their exploitation for a variety of therapeutic applications.
Resumo:
A polymorphic C-->T transition located on the human Y chromosome was found by the systematic comparative sequencing of Y-specific sequence-tagged sites by denaturing high-performance liquid chromatography. The results of genotyping representative global indigenous populations indicate that the locus is polymorphic exclusively within the Western Hemisphere. The pre-Columbian T allele occurs at > 90% frequency within the native South and Central American populations examined, while its occurrence in North America is approximately 50%. Concomitant genotyping at the polymorphic tetranucleotide microsatellite DYS19 locus revealed that the C-->T mutation displayed significant linkage disequilibrium with the 186-bp allele. The data suggest a single origin of linguistically diverse native Americans with subsequent haplotype differentiation within radiating indigenous populations as well as post-Columbian European and African gene flow. The mutation may have originated either in North America at a very early time during the expansion or before it, in the ancestral population(s) from which all Americans may have originated. The analysis of linkage of the DYS199 and the DYS19 tetranucleotide loci suggests that the C-->T mutation may have occurred around 30,000 years ago. We estimate the nucleotide diversity over 4.2 kb of the nonrecombining portion of the Y chromosome to be 0.00014. compared to autosomes, the majority of variation is due to the smaller effective population size of the Y chromosome rather than selective sweeps. There begins to emerge a pattern of pronounced geographical localization of Y-specific nucleotide substitution polymorphisms.
Resumo:
The nonlytic suppression of human immunodeficiency virus (HIV) production from infected CD4+ T cells by CD8+ lymphocytes from HIV-infected individuals is one of the most potent host-mediated antiviral activities observed in vitro. We demonstrate that the pleiotropic cytokine interleukin 2 (IL-2), but not IL-12, is a potent inducer of the CD8+ HIV suppressor phenomenon. IL-2 induces HIV expression in peripheral blood or lymph node mononuclear cells from HIV-infected individuals in the absence of CD8+ T cells. However, IL-2 induces CD8+ T cells to suppress HIV expression when added back to these cultures, and this effect dramatically supersedes the ability to IL-2 to induce HIV expression. Five to 25 times fewer CD8+ cells were required to obtain comparable levels of inhibition of viral production if they were activated in the presence of IL-2 as compared with IL-12 or no exogenous cytokine. Furthermore, IL-2 appeared either to induce a qualitative increase in HIV suppressor cell activity or to increase the relative frequency of suppressor cells in the activated (CD25+) CD8+ populations. Analyses of proviral levels in peripheral blood mononuclear cells suggest that CD8+ T cell-mediated lysis of in vivo infected cells is not induced by IL-2. These results have implications for our understanding of the effects of impaired IL-2 production during HIV disease as well as the overall effects of IL-2-based immunotherapy on HIV replication in vivo.
Resumo:
Retrovirus-mediated gene transfer into hematopoietic cells may provide a means of treating both inherited and acquired diseases involving hematopoietic cells. Implementation of this approach for disorders resulting from mutations affecting the beta-globin gene (e.g., beta-thalassemia and sickle cell anemia), however, has been hampered by the inability to generate recombinant viruses able to efficiently and faithfully transmit the necessary sequences for appropriate gene expression. We have addressed this problem by carefully examining the interactions between retroviral and beta-globin gene sequences which affect vector transmission, stability, and expression. First, we examined the transmission properties of a large number of different recombinant proviral genomes which vary both in the precise nature of vector, beta-globin structural gene, and locus control region (LCR) core sequences incorporated and in the placement and orientation of those sequences. Through this analysis, we identified one specific vector, termed M beta 6L, which carries both the human beta-globin gene and core elements HS2, HS3, and HS4 from the LCR and faithfully transmits recombinant proviral sequences to cells with titers greater than 10(6) per ml. Populations of murine erythroleukemia (MEL) cells transduced by this virus expressed levels of human beta-globin transcript which, on a per gene copy basis, were 78% of the levels detected in an MEL-derived cell line, Hu11, which carries human chromosome 11, the site of the beta-globin locus. Analysis of individual transduced MEL cell clones, however, indicated that, while expression was detected in every clone tested (n = 17), the levels of human beta-globin treatment varied between 4% and 146% of the levels in Hu11. This clonal variation in expression levels suggests that small beta-globin LCR sequences may not provide for as strict chromosomal position-independent expression of beta-globin as previously suspected, at least in the context of retrovirus-mediated gene transfer.