965 resultados para hormone therapy
Resumo:
Thyroid hormone (TH) plays an important role in maintaining a homeostasis in all the cells of our body. It also has significant cardiovascular effects, and abnormalities of its concentration can cause cardiovascular disease and even morbidity. Especially development of heart failure has been connected to low levels of thyroid hormone. A decrease in TH levels or TH-receptor binding adversely effects cardiac function. Although, this occurs in part through alterations in excitation-contraction and transport proteins, recent data from our laboratory indicate that TH also mediates changes in myocardial energy metabolism. Thyroid dysfunction may limit the heart s ability to shift substrate pathways and provide adequate energy supply during stress responses. Our goals of these studies were to determine substrate oxidation pattern in systemic and cardiac specific hypothyroidism at rest and at higher rates of oxygen demand. Additionally we investigated the TH mediated mechanisms in myocardial substrate selection and established the metabolic phenotype caused by a thyroid receptor dysfunction. We measured cardiac metabolism in an isolated heart model using 13Carbon isotopomer analyses with MR spectroscopy to determine function, oxygen consumption, fluxes and fractional contribution of acetyl-CoA to the citric acid cycle (CAC). Molecular pathways for changes in cardiac function and substrate shifts occurring during stress through thyroid receptor abnormalities were determined by protein analyses. Our results show that TH modifies substrate selection through nuclear-mediated and rapid posttranscriptional mechanisms. It modifies substrate selection differentially at rest and at higher rates of oxygen demand. Chronic TH deficiency depresses total CAC flux and selectively fatty acid flux, whereas acute TH supplementation decreases lactate oxidation. Insertion of a dominant negative thyroid receptor (Δ337T) alters metabolic phenotype and contractive efficiency in heart. The capability of the Δ337T heart to increase carbohydrate oxidation in response to stress seems to be limited. These studies provided a clearer understanding of the TH role in heart disease and shed light to identification of the molecular mechanisms that will facilitate in finding targets for heart failure prevention and treatment.
Resumo:
Photodynamic therapy (PDT) is an emerging treatment modality for a range of disease classes, both cancerous and noncancerous. This has brought about an active pursuit of new PDT agents that can be optimized for the unique set of photophysical characteristics that are required for a successful clinical agent. We now describe a totally new class of PDT agent, the BF2-chelated 3,5-diaryl-1H-pyrrol-2-yl-3,5-diarylpyrrol-2-ylideneamines (tetraarylazadipyrromethenes). Optimized synthetic procedures have been developed to facilitate the generation of an array of specifically substituted derivatives to demonstrate how control of key therapeutic parameters such as wavelength of maximum absorbance and singlet-oxygen generation can be achieved. Photosensitizer absorption maxima can be varied within the body's therapeutic window between 650 and 700 nm, with high extinction coefficients ranging from 75,000 to 85,000 M(-1) cm(-1). Photosensitizer singlet-oxygen generation level was modulated by the exploitation of the heavy-atom effect. An array of photosensitizers with and without bromine atom substituents gave rise to a series of compounds with varying singlet-oxygen generation profiles. X-ray structural evidence indicates that the substitution of the bromine atoms has not caused a planarity distortion of the photosensitizer. Comparative singlet-oxygen production levels of each photosensitizer versus two standards demonstrated a modulating effect on singlet-oxygen generation depending upon substituent patterns about the photosensitizer. Confocal laser scanning microscopy imaging of 18a in HeLa cervical carcinoma cells proved that the photosensitizer was exclusively localized to the cellular cytoplasm. In vitro light-induced toxicity assays in HeLa cervical carcinoma and MRC5-SV40 transformed fibroblast cancer cell lines confirmed that the heavy-atom effect is viable in a live cellular system and that it can be exploited to modulate assay efficacy. Direct comparison of the efficacy of the photosensitizers 18b and 19b, which only differ in molecular structure by the presence of two bromine atoms, illustrated an increase in efficacy of more than a 1000-fold in both cell lines. All photosensitizers have very low to nondeterminable dark toxicity in our assay system.
Resumo:
Purpose Developments in anti-osteoporosis medications (AOMs) have led to changes in guidelines and policy, which, along with media and marketing strategies, have had an impact upon the prescribing of AOM. The aim was to examine patterns of AOM dispensing in older women (aged 76–81 years at baseline) from 2002 to 2010. Methods Administrative claims data were used to describe AOM dispensing in 4649 participants (born in 1921–1926 and still alive in 2011) in the Australian Longitudinal Study on Women's Health. The patterns were interpreted in the context of changes in guidelines, indications for subsidy, publications (scholarly and general media), and marketing activities. Results Total use of AOM increased from 134 DDD/1000/day in 2002 to 216 DDD/1000/day in 2007 but then decreased to 184 DDD/1000/day in 2010. Alendronate was the most commonly dispensed AOM but decreased from 2007, while use of risedronate (2002 onward), strontium ranelate (2007 onward) and zoledronic acid (2008 onward) increased. Etidronate and hormone replacement therapy (HRT) prescriptions gradually decreased over time. The decline in alendronate dispensing coincided with increases of other bisphosphonates and publicity about potential adverse effects of bisphosphonates, despite relaxing indications for bone density testing and subsidy for AOM. Conclusions Overall dispense of AOM from 2002 reached a peak in 2007 and thereafter declined despite increases in therapeutic options and improved subsidised access. The recent decline in overall AOM dispensing seems to be explained largely by negative publicity rather than specific changes in guidelines and policy.
Resumo:
BACKGROUND Approximately 50% of patients with stage 3 Chronic Kidney Disease are 25-hydroxyvitamin D insufficient, and this prevalence increases with falling glomerular filtration rate. Vitamin D is now recognised as having pleiotropic roles beyond bone and mineral homeostasis, with the vitamin D receptor and metabolising machinery identified in multiple tissues. Worryingly, recent observational data has highlighted an association between hypovitaminosis D and increased cardiovascular mortality, possibly mediated via vitamin D effects on insulin resistance and inflammation. The main hypothesis of this study is that oral Vitamin D supplementation will ameliorate insulin resistance in patients with Chronic Kidney Disease stage 3 when compared to placebo. Secondary hypotheses will test whether this is associated with decreased inflammation and bone/adipocyte-endocrine dysregulation. METHODS/DESIGN This study is a single-centre, double-blinded, randomised, placebo-controlled trial. Inclusion criteria include; estimated glomerular filtration rate 30-59 ml/min/1.73 m(2); aged >or=18 on entry to study; and serum 25-hydroxyvitamin D levels <75 nmol/L. Patients will be randomised 1:1 to receive either oral cholecalciferol 2000IU/day or placebo for 6 months. The primary outcome will be an improvement in insulin sensitivity, measured by hyperinsulinaemic euglycaemic clamp. Secondary outcome measures will include serum parathyroid hormone, cytokines (Interleukin-1beta, Interleukin-6, Tumour Necrosis Factor alpha), adiponectin (total and High Molecular Weight), osteocalcin (carboxylated and under-carboxylated), peripheral blood mononuclear cell Nuclear Factor Kappa-B p65 binding activity, brachial artery reactivity, aortic pulse wave velocity and waveform analysis, and indirect calorimetry. All outcome measures will be performed at baseline and end of study. DISCUSSION To date, no randomised controlled trial has been performed in pre-dialysis CKD patients to study the correlation between vitamin D status with supplementation, insulin resistance and markers of adverse cardiovascular risk. We remain hopeful that cholecalciferol may be a safe intervention, with health benefits beyond those related to bone-mineral homeostasis. TRIAL REGISTRATION Australian and New Zealand Clinical Trials Registry ACTRN12609000246280.
Resumo:
Ghrelin, a gut hormone originating from the post-translational cleavage of preproghrelin, is the endogenous ligand of growth hormone secretagogue receptor 1a (GHS-R1a). Within the growth hormone (GH) axis, the biological activity of ghrelin requires octanoylation by ghrelin-O-acyltransferase (GOAT), conferring selective binding to the GHS-R1a receptor via acylated ghrelin. Complete loss of preproghrelin-derived signalling (through deletion of the Ghrl gene) contributes to a decline in peak GH release; however, the selective contribution of endogenous acyl-ghrelin to pulsatile GH release remains to be established. We assessed the pulsatile release of GH in ad lib. fed male germline goat−/− mice, extending measures to include mRNA for key hypothalamic regulators of GH release, and peripheral factors that are modulated relative to GH release. The amount of GH released was reduced in young goat−/− mice compared to age-matched wild-type mice, whereas pulse frequency and irregularity increased. Altered GH release did not coincide with alterations in hypothalamic Ghrh, Srif, Npy or Ghsr mRNA expression, or pituitary GH content, suggesting that loss of Goat does not compromise canonical mechanisms that contribute to pituitary GH production and release. Although loss of Goat resulted in an irregular pattern of GH release (characterised by an increase in the number of GH pulses observed during extended secretory events), this did not contribute to a change in the expression of sexually dimorphic GH-dependent liver genes. Of interest, circulating levels of insulin-like growth factor (IGF)-1 were elevated in goat−/− mice. This rise in circulating levels of IGF-1 was correlated with an increase in GH pulse frequency, suggesting that sustained or increased IGF-1 release in goat−/− mice may occur in response to altered GH release patterning. Our observations demonstrate that germline loss of Goat alters GH release and patterning. Although the biological relevance of altered GH secretory patterning remains unclear, we propose that this may contribute to sustained IGF-1 release and growth in goat−/− mice.
Resumo:
Background: Patients may need massive volume-replacement therapy after cardiac surgery because of large fluid transfer perioperatively, and the use of cardiopulmonary bypass. Hemodynamic stability is better maintained with colloids than crystalloids but colloids have more adverse effects such as coagulation disturbances and impairment of renal function than do crystalloids. The present study examined the effects of modern hydroxyethyl starch (HES) and gelatin solutions on blood coagulation and hemodynamics. The mechanism by which colloids disturb blood coagulation was investigated by thromboelastometry (TEM) after cardiac surgery and in vitro by use of experimental hemodilution. Materials and methods: Ninety patients scheduled for elective primary cardiac surgery (Studies I, II, IV, V), and twelve healthy volunteers (Study III) were included in this study. After admission to the cardiac surgical intensive care unit (ICU), patients were randomized to receive different doses of HES 130/0.4, HES 200/0.5, or 4% albumin solutions. Ringer’s acetate or albumin solutions served as controls. Coagulation was assessed by TEM, and hemodynamic measurements were based on thermodilutionally measured cardiac index (CI). Results: HES and gelatin solutions impaired whole blood coagulation similarly as measured by TEM even at a small dose of 7 mL/kg. These solutions reduced clot strength and prolonged clot formation time. These effects were more pronounced with increasing doses of colloids. Neither albumin nor Ringer’s acetate solution disturbed blood coagulation significantly. Coagulation disturbances after infusion of HES or gelatin solutions were clinically slight, and postoperative blood loss was comparable with that of Ringer’s acetate or albumin solutions. Both single and multiple doses of all the colloids increased CI postoperatively, and this effect was dose-dependent. Ringer’s acetate had no effect on CI. At a small dose (7 mL/kg), the effect of gelatin on CI was comparable with that of Ringer’s acetate and significantly less than that of HES 130/0.4 (Study V). However, when the dose was increased to 14 and 21 mL/kg, the hemodynamic effect of gelatin rose and became comparable with that of HES 130/0.4. Conclusions: After cardiac surgery, HES and gelatin solutions impaired clot strength in a dose-dependent manner. The potential mechanisms were interaction with fibrinogen and fibrin formation, resulting in decreased clot strength, and hemodilution. Although the use of HES and gelatin inhibited coagulation, postoperative bleeding on the first postoperative morning in all the study groups was similar. A single dose of HES solutions improved CI postoperatively more than did gelatin, albumin, or Ringer’s acetate. However, when administered in a repeated fashion, (cumulative dose of 14 mL/kg or more), no differences were evident between HES 130/0.4 and gelatin.
Resumo:
Safety, efficacy and enhanced transgene expression are the primary concerns while using any vector for gene therapy. One of the widely used vectors in clinical. trials is adenovirus which provides a safe way to deliver the therapeutic gene. However, adenovirus has poor transduction efficiency in vivo since most tumor cells express low coxsackie and adenovirus receptors. Similarly transgene expression remains low, possibly because of the chromatization of adenoviral genome upon infection in eukaryotic cells, an effect mediated by histone deacetylases (HDACs). Using a recombinant adenovirus (Ad-HSVtk) carrying the herpes simplex thymidine kinase (HSVtk) and GFP genes we demonstrate that HDAC inhibitor valproic acid can bring about an increase in CAR expression on host cells and thereby enhanced Ad-HSVtk infectivity. It also resulted in an increase in transgene (HSVtk and GFP) expression. This, in turn, resulted in increased cell kill of HNSCC cells, following ganciclovir treatment in vitro as well as in vivo in a xenograft nude mouse model.