933 resultados para heat and mass transfer
Resumo:
The change in the specific heat by the application of magnetic field up to 161 for high temperature superconductor system for DyBa2Cu3O7-x by Revaz et al. [23] is examined through the phenomenological Ginzburg-Landau(G-L) theory of anisotropic Type-II superconductors. The observed specific heat anomaly near T-c with magnetic field is explained qualitatively through the expression <Delta C > = (B-a/T-c) t/(1 - t)(alpha Theta(gamma)lambda(2)(m)(0)), which is the anisotropic formulation of the G-L theory in the London limit developed by Kogan and coworkers; relating to the change in specific heat Delta C for the variation of applied magnetic field for different orientations with c-axis. The analysis of this equation explains satisfactorily the specific heat anomaly near T-c and determines the anisotropic ratio gamma as 5.608, which is close to the experimental value 5.3 +/- 0.5given in the paper of Revaz et al. for this system. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
All the second-order boundary-layer effects on the unsteady laminar incompressible flow at the stagnation-point of a three-dimensional body for both nodal and saddle point regions have been studied. It has been assumed that the free-stream velocity, wall temperature and mass transfer vary arbitrarily with time. The effect of the Prandtl number has been taken into account. The partial differential equations governing the flow have been derived for the first time and then solved numerically unsteady free-stream velocity distributions, the nature of the using an implicit finite-difference scheme. It is found that the stagnation point and the mass transfer strongly affect the skin friction and heat transfer whereas the effects of the Prandtl number and the variation of the wall temperature with time are only on the heat transfer. The skin friction due to the combined effects of first- and second-order boundary layers is less than the skin friction due to, the first-order boundary layers whereas the heat transfer has the opposite behaviour. Suction increases the skin friction and heat transfer but injection does the opposite
Resumo:
A decade ago, Budakian and Putterman [Phys. Rev. Lett. 85, 1000 (2000)] ascribed friction to the formation of bonds arising from contact charging when a gold tip of a surface force apparatus was dragged on polymethylmethacrylate surface. We propose a stick-slip model that captures the observed correlation between stick-slip events and charge transfer, and the lack of dependence of the scale factor connecting the force jumps and charge transfer on normal load. Here, stick-slip dynamics arises as a competition between the viscoelastic and plastic deformation time scales and that due to the pull speed with contact charging playing a minor role. Our model provides an alternate basis for explaining most experimental results without ascribing friction to contact charging.
Resumo:
A unified gauge theory of massless and massive spin-2 fields is of considerable current interest. The Poincaré gauge theories with quadratic Lagrangian are linearized, and the conditions on the parameters are found which will lead to viable linear theories with massive gauge particles. As well as the 2+ massless gravitons coming from the translational gauge potential, the rotational gauge potentials, in the linearized limit, give rise to 2+ and 2− particles of equal mass, as well as a massive pseudoscalar.
Resumo:
The thermal decomposition of three commercial samples of carboxy-terminated polybutadiene (PBCT) resins was studied by thermogravimetric analysis (TGA) at heating rates varying from 2° to 100°C/min. Kinetic parameters of the decomposition process at different heating rates were evaluated by means of the Fuoss method.1 The decomposition process and the activation energy values are found to be dependent on heating rate. Mass-spectrometric analysis of the decomposition products shows that the pyrolysis products of PBCT resins are mainly low molecular weight hydrocarbons: ethylene, acetylene, butadiene, propadiene, vinylcyclohexene, etc. The rates of evolution of these hydrocarbon products vary with the carboxy content of the PBCT resin. Based on this, a carbonium ion mechanism has been suggested for the thermal decomposition. The data generated from this work are of importance for a consideration of the mechanism of combustion of composite solid propellants based on PBCT binders.
Resumo:
Symptomless nasopharyngeal carriage of Streptococcus pneumoniae (pneumococcus) is very common in young children. Occasionally the carriage proceeds into mild mucosal diseases, such as sinusitis or acute otitis media, or into serious life-threatening diseases, such as pneumonia, sepsis or meningitis. Each year, up to one million children less than five years of age worldwide die of invasive pneumococcal diseases (IPD). Especially in the low-income countries IPD is a leading health problem in infants; 75% of all IPD cases occur before one year of age. This stresses the need of increased protection against pneumococcus in infancy. Anti-pneumococcal antibodies form an important component in the defence against pneumococcal infection. Maternal immunisation and early infant immunisation are two possible ways by which potentially protective antibody concentrations against pneumococci could be achieved in early infancy. The aim of this thesis is to increase the knowledge of antibody mediated protection against pneumococcal disease in infants and young children. We investigated the transfer of maternal anti-pneumococcal antibodies from Filipino mothers to their infants, the persistence of the transferred antibodies in the infants, the immunogenicity of the 23-valent pneumococcal polysaccharide vaccine (PPV) in infants and the response of the children to a second dose of PPV at three years of age. We also investigated the development of antibodies to pneumococcal protein antigens in relation to culture-confirmed pneumococcal carriage in infants. Serum samples were collected from the mothers, the umbilical cords and from the infants at young age as well as at three years of age. The samples were used to determine the antibody concentrations to pneumococcal serotypes 1, 5, 6B, 14, 18C and 19F, as well as to the pneumococcal proteins PspA, PsaA, Ply, PspC, PhtD, PhtDC and LytC by the enzyme immunoassay. The findings of the present study confirm previously obtained results and add to the global knowledge of responses to PPV in young children. Immunising pregnant women with PPV provides the infants with increased concentrations of pneumococcal polysaccharide antibodies. Of the six serotypes examined, serotypes 1 and 5 were immunogenic already in infants. At three years of age, the children responded well to the second dose of PPV suggesting that maternal and early infant immunisations might not induce hyporesponsiveness to polysaccharide antigens after subsequent immunisations. The anti-protein antibody findings provide useful information for the development of pneumococcal protein vaccines. All six proteins studied were immunogenic in infancy and the development of anti-protein antibodies started early in life in relation to pneumococcal carriage.
Resumo:
Synthesis of methyl ester of 3-oxo-indan-5-acetic acid (3), an analogue of the natura1 product pterosin-E (4), starting from cyclopentadiene (1) and p-benzoquinone (2) using a sequence of six ground and excited state reactions, is described.
Resumo:
A novel ‘picket-fence’ porphyrin, 5,10,15,20-tetrakis[o-(tetrahydro-2-thenoylamino)phenyl]porphyrin (H2L) with ligating tetrahydrothiophene rings disposed perpendicular to the porphyrin plane has been synthesised. Its zinc(II) derivative, [ZnL], binds two silver(I) ions co-operatively with a dissociation constant of 4.8 × 10–8 dm3 mol–1. Time-resolved fluorescence lifetime measurements reveal the presence of intramolecular photoexcited electron transfer in this donor–acceptor system.
Resumo:
Impedance matrix and transfer matrix methods are often used in the analysis of linear dynamical systems. In this paper, general relationships between these matrices are derived. The properties of the impedance matrix and the transfer matrix of symmetrical systems, reciprocal systems and conservative systems are investigated. In the process, the following observations are made: (a) symmetrical systems are not a subset of reciprocal systems, as is often misunderstood; (b) the cascading of reciprocal systems again results in a reciprocal system, whereas cascading of symmetrical systems does not necessarily result in a symmetrical system; (c) the determinant of the transfer matrix, being ±1, is a property of both symmetrical systems and reciprocal systems, but this condition, however, is not sufficient to establish either the reciprocity or the symmetry of the system; (d) the impedance matrix of a conservative system is skew-Hermitian.
Resumo:
The trans- and cis-stilbenes upon inclusion in NaY zeolite are thermally stable. Direct excitation and triplet sensitization results in geometric isomerization and the excited state behavior under these conditions are similar to that in solution. Upon direct excitation, a photostationary state consisting of 65% cis and 35% trans isomers is established. Triplet sensitization with 2-acetonaphthone gave a photostationary state consisting of 63% cis and 37% trans isomers. These numbers are similar to the ones obtained in solution. Thus, the presence of cations and the confined space within the zeolite have very little influence on the overall chemistry during direct and triplet sensitization. However, upon electron transfer sensitization with N-methylacridinium (NMA) as the sensitizer within NaY, isomerization from cis-stilbene radical cation to trans-stilbene occurs and the recombination of radical ions results in triplet stilbene. Prolonged irradiation gave a photostationary state (65% cis and 35% trans) similar to triplet sensitization. This behavior is unique to the zeolite and does not take place in solution. Steady state fluorescence measurements showed that the majority of stilbene molecules are close to the N-methylacridinium sensitizer. Diffuse reflectance flash photolysis studies established that independent of the isomer being sensitized only trans radical cation is formed. Triplet stilbene is believed to be generated via recombination of stilbene radical cation and sensitizer radical anion. One should be careful in using acidic HY zeolite as a medium for photoisomerization of stilbenes. In our hands, in these acidic zeolites isomerization dominated the photoisomerization. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In recent times the demand of ultra-low carbon steel (ULCS) with improved mechanical properties such as good ductility and good workability has been increased as it is used to produce cold-rolled steel sheets for automobiles. For producing ULCS efficiently, it is necessary to improve the productivity of the vacuum degassers such as RH, DH and tank degasser. Recently, it has been claimed that using a new process, called REDA (revolutionary degassing activator), one can achieve the carbon content below 10 ppm in less time. As such, REDA process has not been studied thoroughly in terms of fluid flow and mass transfer which is a necessary precursor to understand and design this process. Therefore, momentum and mass transfer of the process has been studied by solving momentum and species balance equations along with k-epsilon turbulent model in two-dimension (2D) for REDA process. Similarly, computational fluid dynamic studies have been made in 2D for tank and RH degassers to compare them with REDA process. Computational results have been validated with published experimental and theoretical data. It is found that REDA process is the most efficient among all these processes in terms of mixing efficiency. Fluid flow phenomena have been studied in details for REDA process by varying gas flow rate, depth of immersed snorkel in the steel, diameter of the snorkel and change in vacuum pressure. It is found that design of snorkel affects the melt circulation in the bath significantly.
Resumo:
Glaciers are natural reservoirs of fresh water in frozen state and sensitive indicators of climate change. Among all the mountainous glaciated regions, glaciers of Himalayas form one of the largest concentrations of ice outside the Polar Regions. Almost all the major rivers of northern India originate from these glaciers and sustain perennial flow. Therefore, in view of the importance and role of the glaciers in sustaining the life on the Earth, monitoring the health of glaciers is necessary. Glacier's health is monitored in two ways (i) by mapping the change in extent of glaciers (ii) by finding variation in the annual mass balance. This paper has been discussed the later approach for monitoring the health of glaciers of Warwan and Bhut basins. Mass balance of glaciers of these two basins was determined based on the extraction of snow line at the end of ablation season. A series of satellite images of AWiFS sensor were analysed for extraction of snowline on the glaciers for the period of 2005, 2006 and 2007. The snow line at the end of ablation season is used to compute accumulation area ratio (AAR = Accumulation area/Glacier area) for each glacier of basins. An approach based on relationship of AAR to specific mass balance (computed in field) for glaciers of Basapa basin was employed in the present study. Mean of specific mass balance of individual glacier for the year 2005, 2006 and 2007 of Warwan basin was found to be -ve 0.19 m, -ve 0.27 m and -ve 0.2 m respectively. It is 0.05 m, -ve 0.11 m and -ve 0.19 m for Bhut basin. The analysis suggests a loss of 4.3 and 0.83 kmA(3) of glacier in the monitoring period of 3 years for Warwan and Bhut basins respectively. The overall results suggest that the glaciers of Warwan basin and Bhut basins have suffered more loss of ice than gain in the monitoring period of 3 years.