965 resultados para geometrical optics
Resumo:
We consider the parametric quantum field theory involving cubic and quartic couplings of two bosonic fields. This is exactly soluble for the two-particle energy eigenstates (or quantum solitons) in one, two, and three space dimensions. We estimate the binding energies and corresponding radii in the case of photonic fields in nonlinear optical materials, and Bose-Einstein condensates. [S1050-2947(98)51110-9].
Resumo:
We introduce the study of dynamical quantum noise in Bose-Einstein condensates through numerical simulation of stochastic partial differential equations obtained using phase-space representations. We derive evolution equations for a single trapped condensate in both the positive-P and Wigner representations and perform simulations to compare the predictions of the two methods. The positive-P approach is found to be highly susceptible to the stability problems that have been observed in other strongly nonlinear, weakly damped systems. Using the Wigner representation, we examine the evolution of several quantities of interest using from a variety of choices of initial stare for the condensate and compare results to those for single-mode models. [S1050-2947(98)06612-8].
Resumo:
Squeezed light is of interest as an example of a non-classical state of the electromagnetic field and because of its applications both in technology and in fundamental quantum physics. This review concentrates on one aspect of squeezed light, namely its application in atomic spectroscopy. The general properties, detection and application of squeezed light are first reviewed. The basic features of the main theoretical methods (master equations, quantum Langevin equations, coupled systems) used to treat squeezed light spectroscopy are then outlined. The physics of squeezed light interactions with atomic systems is dealt with first for the simpler case of two-level atoms and then for the more complex situation of multi-level atoms and multi-atom systems. Finally the specific applications of squeezed light spectroscopy are reviewed.
Resumo:
We consider two different kinds of fluctuations in an ion trap potential: external fluctuating electrical fields, which cause statistical movement (wobbling) of the ion relative to the center of the trap, and fluctuations of the spring constant, which an due to fluctuations of the ac component of the potential applied in the Paul trap for ions. We write down master equations for both cases and, averaging out the noise, obtain expressions for the heating of the ion. We compare our results to previous results for far-off resonance optical traps and heating in ion traps. The effect of fluctuating external electrical fields for a quantum gate operation (controlled-NOT) is determined and the fidelity for that operation derived. [S1050-2947(99)06005-9].
Resumo:
We derive a nonlinear wave equation for a signal beam which is coupled to a pump beam by two-wave-mixing in a photorefractive crystal. This equation describes self-focusing of the signal beam. We compare two-wave-mixing induced spatial self-focusing of single-pass experiments in a diffusion-type photorefractive crystal and of a photorefractive oscillator using the same crystal. We observe that the nonlinear refractive index change in the oscillator is decreased while increasing resonator losses.
Resumo:
The free running linewidth of an external cavity grating feedback diode laser is on the order of a few megahertz and is limited by the mechanical and acoustic vibrations of the external cavity. Such frequency fluctuations can be removed by electronic feedback. We present a hybrid stabilisation technique that uses both a Fabry-Perot confocal cavity and an atomic resonance to achieve excellent short and long term frequency stability. The system has been shown to reduce the laser linewidth of an external cavity diode laser by an order of magnitude to 140 kHz, while limiting frequency excursions to 60 kHz relative to an absolute reference over periods of several hours. The scheme also presents a simple way to frequency offset two lasers many gigahertz apart which should find a use in atom cooling experiments, where hyperfine ground-state frequency separations are often required.
Resumo:
We review recent developments in quantum and classical soliton theory, leading to the possibility of observing both classical and quantum parametric solitons in higher-dimensional environments. In particular, we consider the theory of three bosonic fields interacting via both parametric (cubic) and quartic couplings. In the case of photonic fields in a nonlinear optical medium this corresponds to the process of sum frequency generation (via chi((2)) nonlinearity) modified by the chi((3)) nonlinearity. Potential applications include an ultrafast photonic AND-gate. The simplest quantum solitons or energy eigenstates (bound-state solutions) of the interacting field Hamiltonian are obtained exactly in three space dimensions. They have a point-like structure-even though the corresponding classical theory is nonsingular. We show that the solutions can be regularized with the imposition of a momentum cut-off on the nonlinear couplings. The case of three-dimensional matter-wave solitons in coupled atomic/molecular Bose-Einstein condensates is discussed.
Resumo:
We present numerical and analytical results for the Mollow probe absorption spectrum of a coherently driven two-level system in a narrow bandwidth squeezed vacuum field. The spectra are calculated for the case where the Rabi frequency of the driving field is much larger than the natural linewidth and the squeezed vacuum carrier frequency is detuned from the driving laser frequency. The driving laser is on resonance. We show that in a detuned squeezed vacuum the standard Mellow features are each split into triplets. The central components of each triplet are weakly dependent on the squeezing phase but the sidebands strongly depend on the phase and can have dispersive or absorptive/emissive profiles. We also derive approximate analytical expressions for the spectral features and find that the multi-peak structure of the spectrum can be interpreted either via the eigenfrequencies of a generalized Floquet Hamiltonian or in terms of three-photon transitions between dressed stales involving a probe field photon and a correlated photon pair from the squeezed vacuum field.
Resumo:
This paper describes the ocular morphology of young adults of the southern hemisphere lamprey Geotria australis, the sole representative of the Geotriidae, and makes comparisons with those of holarctic lampreys (Petromyzontidae). As previously reported for the holarctic lamprey Ichthyomyzon unicuspis [Collin and Fritzsch, 1993], the lens of G. australis is non-spherical and possesses a cone-shaped posterior that may be capable of mediating variable focus. The avascular retina of G. australis is well differentiated, containing three retinal ganglion cell populations, three layers of horizontal cells and three photoreceptor types, in contrast to petromyzontids that contain only two photoreceptor types (short and long), G. australis possesses one rod-like (R1) and two cone-like (C1 and C2) photoreceptors. Although the rodlike receptor in G. australis may be homologous with the short receptors of holarctic lampreys, the two cone-like receptors have morphological characteristics that differ markedly from those of the long receptors of their holarctic counterparts. The features which distinguish the two cone-like receptors from those of the long receptor type in holarctic lampreys are the characteristics of the mitochondria and the presence of large amounts of two different types of stored secretory material in the endoplasmic reticulum of the myoid (refractile bodies). The endoplasmic reticulum of each receptor type has a different shape and staining profile and is polymorphic, each showing a continuum of distension. It is proposed that the presence of two cone-like photoreceptors with different characteristics would increase the spectral range of G. australis and thus be of value during the parasitic phase, when this lamprey lives in the surface marine waters. The irideal flap, present in G. australis but not petromyzontids, would assist in reducing intraocular flare during life in surface waters. The results of this study, which are discussed in the context of the proposed evolution of lampreys, emphasise that it is important to take into account the characteristics of the eyes of southern hemisphere lampreys when making generalizations about the eyes of lampreys as a whole.
Resumo:
We demonstrate a three-dimensional scanning probe microscope in which the extremely soft spring of an optical tweezers trap is used. Feedback control of the instrument based on backscattered light levels allows three-dimensional imaging of microscopic samples in an aqueous environment. Preliminary results with a 2-mu m-diameter spherical probe indicate that features of approximately 200 nm can be resolved, with a sensitivity of 5 nm in the height measurement. The theoretical resolution is limited by the probe dimensions. (C) 1999 Optical Society of America.
Resumo:
The Montreal Process indicators are intended to provide a common framework for assessing and reviewing progress toward sustainable forest management. The potential of a combined geometrical-optical/spectral mixture analysis model was assessed for mapping the Montreal Process age class and successional age indicators at a regional scale using Landsat Thematic data. The project location is an area of eucalyptus forest in Emu Creek State Forest, Southeast Queensland, Australia. A quantitative model relating the spectral reflectance of a forest to the illumination geometry, slope, and aspect of the terrain surface and the size, shape, and density, and canopy size. Inversion of this model necessitated the use of spectral mixture analysis to recover subpixel information on the fractional extent of ground scene elements (such as sunlit canopy, shaded canopy, sunlit background, and shaded background). Results obtained fron a sensitivity analysis allowed improved allocation of resources to maximize the predictive accuracy of the model. It was found that modeled estimates of crown cover projection, canopy size, and tree densities had significant agreement with field and air photo-interpreted estimates. However, the accuracy of the successional stage classification was limited. The results obtained highlight the potential for future integration of high and moderate spatial resolution-imaging sensors for monitoring forest structure and condition. (C) Elsevier Science Inc., 2000.
Resumo:
In this paper we investigate the quantum and classical dynamics of a single trapped ion subject to nonlinear kicks derived from a periodic sequence of Gaussian laser pulses. We show that the classical system exhibits: diffusive growth in the energy, or heating,'' while quantum mechanics suppresses this heating. This system may be realized in current single trapped-ion experiments with the addition of near-field optics to introduce tightly focused laser pulses into the trap.
Resumo:
We present a novel method of performing quantum logic gates in trapped ion quantum computers which does not require the ions to be cooled down to the ground state of their vibrational modes, thereby avoiding one of the principal experimental difficulties encountered in realizing this technology. Our scheme employs adiabatic passages and a phase shift conditional on the phonon number state.
Resumo:
Using the coupled-system approach we calculate the optical spectra of the fluorescence and transmitted fields of a two-level atom driven by a squeezed vacuum of bandwidths smaller than the natural atomic linewidth. We find that in this regime of squeezing bandwidths the spectra exhibit unique features, such as a hole burning and a three-peak structure, which do not appear for a broadband excitation. We show that the features are unique to the quantum nature of the driving squeezed vacuum field and donor appear when the atom is driven by a classically squeezed field. We find that a quantum squeezed-vacuum field produces squeezing in the emitted fluorescence field which appears only in the squeezing spectrum while there is no squeezing in the total field. We also discuss a nonresonant excitation and find that depending on the squeezing bandwidth there is a peak or a hole in the spectrum at a frequency corresponding to a three-wave-mixing process. The hole appears only for a broadband excitation and results from the strong correlations between squeezed-vacuum photons.
Resumo:
We describe the classical and quantum two-dimensional nonlinear dynamics of large blue-detuned evanescent-wave guiding cold atoms in hollow fiber. We show that chaotic dynamics exists for classic dynamics, when the intensity of the beam is periodically modulated. The two-dimensional distributions of atoms in (x,y) plane are simulated. We show that the atoms will accumulate on several annular regions when the system enters a regime of global chaos. Our simulation shows that, when the atomic flux is very small, a similar distribution will be obtained if we detect the atomic distribution once each the modulation period and integrate the signals. For quantum dynamics, quantum collapses, and revivals appear. For periodically modulated optical potential, the variance of atomic position will be suppressed compared to the no modulation case. The atomic angular momentum will influence the evolution of wave function in two-dimensional quantum system of hollow fiber.