928 resultados para genomics
Resumo:
Phenotypic variation (morphological and pathogenic characters), and genetic variability were studied in 50 isolates of seven Plasmopara halstedii (sunflower downy mildew) races 100, 300, 304, 314, 710, 704 and 714. There were significant morphological, aggressiveness, and genetic differences for pathogen isolates. However, there was no relationship between morphology of zoosporangia and sporangiophores and pathogenic and genetic characteristics for the races used in our study. Also, our results provided evidence that no relation between pathogenic traits and multilocus haplotypes may be established in P. halstedii. The hypothesis explaining the absence of relationships among phenotypic and genetic characteristics is discussed.
Resumo:
Coccolithoviruses infect the marine coccolithophorid microalga Emiliania huxleyi. Here, we describe the genomes of four new coccolithoviruses isolated from UK coastal locations. Of particular interest, EhV-18 and EhV-145 encode serine palmitoyltransferase function via two distinct genes, whereas all other coccolithoviruses have SPT as a gene fusion of LCB1/LCB2 domains.
Resumo:
Despite the ecological importance of copepods, few Next Generation Sequencing studies (NGS) have been performed on small crustaceans, and a standard method for RNA extraction is lacking. In this study, we compared three commonly-used methods: TRIzol®, Aurum Total RNA Mini Kit and Qiagen RNeasy Micro Kit, in combination with preservation reagents TRIzol® or RNAlater®, to obtain high-quality and quantity of RNA from copepods for NGS. Total RNA was extracted from the copepods Calanus helgolandicus, Centropages typicus and Temora stylifera and its quantity and quality were evaluated using NanoDrop, agarose gel electrophoresis and Agilent Bioanalyzer. Our results demonstrate that preservation of copepods in RNAlater® and extraction with Qiagen RNeasy Micro Kit were the optimal isolation method for high-quality and quantity of RNA for NGS studies of C. helgolandicus. Intriguingly, C. helgolandicus 28S rRNA is formed by two subunits that separate after heat-denaturation and migrate along with 18S rRNA. This unique property of protostome RNA has never been reported in copepods. Overall, our comparative study on RNA extraction protocols will help increase gene expression studies on copepods using high-throughput applications, such as RNA-Seq and microarrays.
Resumo:
An exploration and collection mission for wild Brassica oleracea populations was carried out in spring and summer of 2013. The aim of this collection was to expand the number of accessions of wild Brassica oleracea available for basic and applied research in plant breeding. In this paper we report a new accession of wild Brassica oleracea in an unexplored coastal area of Galicia, NW Iberian Peninsula. Details of population ecology and vegetation, soil, climate and geographic data were recorded for this population. The “Endangered” threat category for the region is proposed, and actions for in situ and ex situ conservation are proposed. Seeds will be added to the germplasm collections of University of Santiago de Compostela and Misión Biológica de Galicia (CSIC) for further research on diverse aspects of the dynamics and ecophysiology of the population along with characterization and evaluation of useful traits.
Resumo:
The defensive skin secretions of amphibians are a rich source of bioactive peptides. Here we describe a rapid technique for skin granular gland transcriptome cloning from a surrogate tissue-the secretion itself. cDNA libraries were constructed from lyophilized skin secretion from each of the Chinese frogs (Rana schmackeri, Rana versabilis, and Rana plancyi fukienensis) using magnetic oligo(dT) bead-captured polyadenylated mRNA as templates. Specific esculentin cDNAs were amplified by 3'-RACE using a degenerate primer designed for a consensus nucleotide sequence in the 5' untranslated region of previously characterized ranid frog peptide cDNAs. The cloned cDNAs were found to encode the antimicrobial peptides esculentins 1 and 2 from each of the species examined. The presence of predicted peptide structures in skin secretions was confirmed by MALDI-TOF mass spectrometry and automated Edman degradation. This experimental approach can thus rapidly expedite parallel transcriptome and peptidome analysis of amphibian granular gland secretions without harming or sacrificing donor animals.
Resumo:
Here we report the identification of 10 human, 1 murine, and 2 rat ORFs, all of which represent additional members of the DUB/USP17 family of deubiquitinating enzymes. In addition, we demonstrate that this family constitutes part of a tandemly repeated sequence conserved throughout humans, mice, and rats. Furthermore, upon examination of the known family members we have found that the multiple genes observed, in contrast to other gene families, have arisen due to the independent expansion of an ancestral sequence within each species. This premise is further strengthened by the observation that the murine and rat genes span two exons while their human counterparts have one. These observations, in conjunction with previous work demonstrating that the DUB/USP17's are cytokine inducible and that they regulate both cell growth and survival, suggest that the DUB/USP17's are a large highly conserved family of genes that may play an important role in controlling cell fate.
Resumo:
The aim of the 5-year European Union (EU)-Integrated Project GEnetics of Healthy Aging (GEHA), constituted by 25 partners (24 from Europe plus the Beijing Genomics Institute from China), is to identify genes involved in healthy aging and longevity, which allow individuals to survive to advanced old age in good cognitive and physical function and in the absence of major age-related diseases. To achieve this aim a coherent, tightly integrated program of research that unites demographers, geriatricians, geneticists, genetic epidemiologists, molecular biologists, bioinfomaticians, and statisticians has been set up. The working plan is to: (a) collect DNA and information on the health status from an unprecedented number of long-lived 90+ sibpairs (n = 2650) and of younger ethnically matched controls (n = 2650) from 11 European countries; (b) perform a genome-wide linkage scannning in all the sibpairs (a total of 5300 individuals); this investigation will be followed by linkage disequilibrium mapping (LD mapping) of the candidate chromosomal regions; (c) study in cases (i.e., the 2650 probands of the sibpairs) and controls (2650 younger people), genomic regions (chromosome 4, D4S1564, chromosome 11, 11.p15.5) which were identified in previous studies as possible candidates to harbor longevity genes; (d) genotype all recruited subjects for apoE polymorphisms; and (e) genotype all recruited subjects for inherited as well as epigenetic variability of the mitochondrial DNA (mtDNA). The genetic analysis will be performed by 9 high-throughput platforms, within the framework of centralized databases for phenotypic, genetic, and mtDNA data. Additional advanced approaches (bioinformatics, advanced statistics, mathematical modeling, functional genomics and proteomics, molecular biology, molecular genetics) are envisaged to identify the gene variant(s) of interest. The experimental design will also allow (a) to identify gender-specific genes involved in healthy aging and longevity in women and men stratified for ethnic and geographic origin and apoE genotype; (b) to perform a longitudinal survival study to assess the impact of the identified genetic loci on 90+ people mortality; and (c) to develop mathematical and statistical models capable of combining genetic data with demographic characteristics, health status, socioeconomic factors, lifestyle habits.
Resumo:
Background: Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality worldwide. At present no reliable biomarkers are available to guide the management of this condition. Microarray technology may allow appropriate biomarkers to be identified but present platforms are lacking disease focus and are thus likely to miss potentially vital information contained in patient tissue samples.
Resumo:
Genomics encompasses a range of powerful technologies that can be applied at all levels of gene expression, from transcription to mRNA translation. Collectively, these technologies have great potential for improving drug discovery, both target and molecule recognition, and development. In this article we review the current and potential future status of established and novel genomic methods within drug discovery.