970 resultados para gene transfer
Resumo:
A novel, hyperbranched, amphiphilic multiarm biodegradable polyethylenimine-poly(gamma-benZyl-L-gluta- mate) (PEI-PBLG) copolymer was prepared by the ring-opening polymerization of gamma-benzyl-L-glutamate-N-car-boxyanhydride (BLG-NCA) with hyperbranched PEI as a macroinitiator. The copolymer could self-assemble into core-shell micelles in aqueous solution with highly hydrophobic micelle cores. As the PBLG content was increased, the size of the micelles increased and the critical micelle concentration (CMC) decreased. The surface of the micelles had a positive potential. The cationic micelles were capable of complexing with plasmid DNA (pDNA), which could be released subsequently by treatment with polyanions. The PEI-PBLG copolymer formed unimolecular micelles in chloroform solution. ne pH-sensitive phase-transfer behavior exhibited two critical pH points for triggering the encapsulation and release of guest molecules. Both the encapsulation and release processes were rapid and reversible. Under strong acidic or alkaline conditions, the release process became partially or completely irreversible.
Resumo:
In this study, the background activity of beta-glucuronidase (GUS) was analyzed histochemically and fluorometrically in the negative control of Laminaria japonica (Phaeophyta) thalli, showing low level of activity. GUS gene transformation without selectable gene in L. japonica was performed using four different promoters, i.e., Cauliflower mosaic virus 35S promoter (CaMV35S) from cauliflower mosaic virus, ubiquitin promoter (UBI) from maize, adenine-methyl transfer enzyme gene promoter (AMT) from virus in green alga Chlorella, and fucoxanthin chlorophyll a/c-binding protein gene promoter (FCP) from diatom Phaeodactylum tricornutum. The GUS transient activity was determined fluorometrically after bombarding sliced parthenogenetic sporophytes explants, and it was found that the activity resulting from CaMV35S and FCP promoters (in 114.3 and 80.6 pmol MU min(-1) (mg protein)(-1), respectively) was higher than for the other two promoters. The female gametophytes were bombarded and regenerated parthenogenetic sporophytes. FCP was the only promoter that resulted in detectable GUS chimeric expression activity during histochemical staining and polymerase chain reaction. Results of Southern blot showed that GUS gene was integrated with the L. japonica genome.
Resumo:
The human epidermal growth factor (hEGF) is a small single-chain polypeptide of 53 amino acid residues. It can stimulate the proliferation of many cell types, mainly those of epidermal and epithelial tissues both in vivo and in vitro. A vector pRL-hEGF was constructed using plasmids pRL-489 and pUC-hEGF. The synthetic hEGF gene was recombined into the downstream of strong promoter psbA in plasmids pRL-489. Then, the vector was introduced into Synechococcus sp. PCC 7002 and Anabaena sp. PCC 7120 by triparental conjugative transfer. The transformation was confirmed by PCR amplification. The pRL-hEGF is thought to be retained as a plasmid form in the transgenic Anabaena sp. PCC 7120, since it can be recovered. However, it has been integrated into the chromosome of Synechococcus sp. PCC 7002 as there is no duplication origin in the pRL-hEGF in this cyanobacterium. and plasmid cannot be isolated from the Synechococcus sp. PCC 7002 either. The radioimmunoassay (RIA) proved that the hEGF gene has been expressed as the protein existed in these two strains of transgenic cyanobacteria, and the hEGF protein in Anabaena sp. PCC 7002 could be secreted into the medium.
Resumo:
The construction of the shuttle, expression vector of human tumor necrosis factor alpha (hTNF-alpha) gene and its expression in a cyanobacterium Anabaena sp. PCC 7120 was reported. The 700-bp hTNF cDNA fragments have been recovered from plasmid pRL-rhTNF, then inserted downstream of the promoter PpsbA in the plasmid pRL439. The resultant intermediary plasmid pRL-TC has further been combined with the shuttle vector pDC-8 to get the shuttle, expression vector pDC-TNF. The expression of the rhTNF gene in Escherichia coil has been analyzed by SDS-PAGE and thin-layer scanning, and the results show that the expressed TNF protein with these two vectors is 16.9 percent (pRL-TC) and 15.0 percent (pDC-TNF) of the total proteins in the cells, respectively, while the expression level of TNF gene in plasmid pRL-rhTNF is only 11.8 percent. Combined with the participation of the conjugal and helper plasmids, pDC-TNF has been introduced into Anabaena sg PCC 7120 by triparental conjugative transfer, and the stable transgenic strains have been obtained. The existence of the introduced plasmid pDC-TNF in recombinant cyanobacterial cells has been demonstrated by the results of the agarose electrophoresis with the extracted plasmid samples and Southern blotting with alpha-(32)p labeled hTNF cDNA probes, while the expression of the hTNF gene in Anabaena sp. PCC 7120 has been confirmed by the results of Western blotting with extracted protein samples and human TNF-alpha monoclonal antibodies. The cytotoxicity assays using the mouse cancer cell line L929 proved the cytotoxicity of the TNF in the crude extracts from the transgenic cyanobacterium Anabaena sp. PCC 7120.
Resumo:
Given the commercial and ecological importance of the Asian paddle crab, Charybdis japonica, there is a clearly need for genetic and molecular research on this species. Here, we present the complete mitochondrial genome sequence of C. japonica, determined by the long-polymerase chain reaction and primer walking sequencing method. The entire genome is 15,738 bp in length, encoding a standard set of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes, plus the putative control region, which is typical for metazoans. The total A+T content of the genome is 69.2%, lower than the other brachyuran crabs except for Callinectes sapidus. The gene order is identical to the published marine brachyurans and differs from the ancestral pancrustacean order by only the position of the tRNA (His) gene. Phylogenetic analyses using the concatenated nucleotide and amino acid sequences of 13 protein-coding genes strongly support the monophyly of Dendrobranchiata and Pleocyemata, which is consistent with the previous taxonomic classification. However, the systematic status of Charybdis within subfamily Thalamitinae of family Portunidae is not supported. C. japonica, as the first species of Charybdis with complete mitochondrial genome available, will provide important information on both genomics and molecular ecology of the group.
Resumo:
Selenium (Se) is a micronutrient necessary for the function of a variety of important enzymes; Se also exhibits a narrow range in concentrations between essentiality and toxicity. Oviparous vertebrates such as birds and fish are especially sensitive to Se toxicity, which causes reproductive impairment and defects in embryo development. Selenium occurs naturally in the Earth's crust, but it can be mobilized by a variety of anthropogenic activities, including agricultural practices, coal burning, and mining.
Mountaintop removal/valley fill (MTR/VF) coal mining is a form of surface mining found throughout central Appalachia in the United States that involves blasting off the tops of mountains to access underlying coal seams. Spoil rock from the mountain is placed into adjacent valleys, forming valley fills, which bury stream headwaters and negatively impact surface water quality. This research focused on the biological impacts of Se leached from MTR/VF coal mining operations located around the Mud River, West Virginia.
In order to assess the status of Se in a lotic (flowing) system such as the Mud River, surface water, insects, and fish samples including creek chub (Semotilus atromaculatus) and green sunfish (Lepomis cyanellus) were collected from a mining impacted site as well as from a reference site not impacted by mining. Analysis of samples from the mined site showed increased conductivity and Se in the surface waters compared to the reference site in addition to increased concentrations of Se in insects and fish. Histological analysis of mined site fish gills showed a lack of normal parasites, suggesting parasite populations may be disrupted due to poor water quality. X-ray absorption near edge spectroscopy techniques were used to determine the speciation of Se in insect and creek chub samples. Insects contained approximately 40-50% inorganic Se (selenate and selenite) and 50-60% organic Se (Se-methionine and Se-cystine) while fish tissues contained lower proportions of inorganic Se than insects, instead having higher proportions of organic Se in the forms of methyl-Se-cysteine, Se-cystine, and Se-methionine.
Otoliths, calcified inner ear structures, were also collected from Mud River creek chubs and green sunfish and analyzed for Se content using laser ablation inductively couple mass spectrometry (LA-ICP-MS). Significant differences were found between the two species of fish, based on the concentrations of otolith Se. Green sunfish otoliths from all sites contained background or low concentrations of otolith Se (< 1 µg/g) that were not significantly different between mined and unmined sites. In contrast creek chub otoliths from the historically mined site contained much higher (≥ 5 µg/g, up to approximately 68 µg/g) concentrations of Se than for the same species in the unmined site or for the green sunfish. Otolith Se concentrations were related to muscle Se concentrations for creek chubs (R2 = 0.54, p = 0.0002 for the last 20% of the otolith Se versus muscle Se) while no relationship was observed for green sunfish.
Additional experiments using biofilms grown in the Mud River showed increased Se in mined site biofilms compared to the reference site. When we fed fathead minnows (Pimephales promelas) on these biofilms in the laboratory they accumulated higher concentrations of Se in liver and ovary tissues compared to fathead minnows fed on reference site biofilms. No differences in Se accumulation were found in muscle from either treatment group. Biofilms were also centrifuged and separated into filamentous green algae and the remaining diatom fraction. The majority of Se was found in the diatom fraction with only about 1/3rd of total biofilm Se concentration present in the filamentous green algae fraction
Finally, zebrafish (Danio rerio) embryos were exposed to aqueous Se in the form of selenate, selenite, and L-selenomethionine in an attempt to determine if oxidative stress plays a role in selenium embryo toxicity. Selenate and selenite exposure did not induce embryo deformities (lordosis and craniofacial malformation). L-selenomethionine, however, induced significantly higher deformity rates at 100 µg/L compared to controls. Antioxidant rescue of L-selenomethionime induced deformities was attempted in embryos using N-acetylcysteine (NAC). Pretreatment with NAC significantly reduced deformities in the zebrafish embryos secondarily treated with L-selenomethionine, suggesting that oxidative stress may play a role in Se toxicity. Selenite exposure also induced a 6.6-fold increase in glutathione-S-transferase pi class 2 gene expression, which is involved in xenobiotic transformation. No changes in gene expression were observed for selenate or L-selenomethionine-exposed embryos.
The findings in this dissertation contribute to the understanding of how Se bioaccumulates in a lotic system and is transferred through a simulated foodweb in addition to further exploring oxidative stress as a potential mechanism for Se-induced embryo toxicity. Future studies should continue to pursue the role of oxidative stress and other mechanisms in Se toxicity and the biotransformation of Se in aquatic ecosystems.
Resumo:
Familial hypercholesterolemia (FH) is a genetic disorder characterized by abnormally high concentrations of low-density lipoprotein-cholesterol (LDLcholesterol) in the blood that can contribute to heart disease. FH can result from a defect in the gene for the LDL receptor (LDL-R). FH patients lacking functional LDL-R may benefit from viral-mediated transfer of a functional copy of the open reading frame (ORF) of the LDL-R. Since a recombinant adeno-associated virus (rAAV) is not immunogenic and can be mass-produced, it shows promise for gene therapy applications. AAV6 and AAV8 have been shown to specifically transduce hepatocytes in several species, which normally remove the majority of LDL-cholesterol from the blood via LDL-R-mediated endocytosis. Because of the potential of rAAV to treat FH by delivery of a correct LDL-R ORF to hepatocytes, the liver specificity of these two AAV serotypes was evaluated. Additionally, rabbits were chosen as the animal model for this study because a specific strain of rabbits, Watanabe heritable hyperlipidemic (WHHL), adequately mimics the pathology of FH in humans. Exposure of rabbit liver to rAAV with the marker LacZ and subsequent inspection of liver tissue showed that AAV8 transduced rabbit liver more efficiently than AAV6. To assess the feasibility of producing a rAAV capable of transferring the LDL-R ORF to rabbit hepatocytes in vivo, rAAV8-LDL-R was mass-produced by a baculovirus system in suspension grown insect cells.
Resumo:
This study has investigated the effects of herpes simplex thymidine kinase gene (HSV-tk) transfer followed by ganciclovir treatment as adjuvant gene therapy to surgical resection in patients with recurrent glioblastoma multiforme (GBM). The study was open and single-arm, and aimed at assessing the feasibility and safety of the technique and indications of antitumor activity. In 48 patients a suspension of retroviral vector-producing cells (VPCs) was administered by intracerebral injection immediately after tumor resection. Intravenous ganciclovir was infused daily 14 to 27 days after surgery. Patients were monitored for adverse events and for life by regular biosafety assaying. Tumor changes were monitored by magnetic resonance imaging (MRI). Reflux during injection was a frequent occurrence but serious adverse events during the treatment period (days 1-27) were few and of a nature not unexpected in this population. One patient experienced transient neurological disorders associated with postganciclovir MRI enhancement. There was no evidence of replication-competent retrovirus in peripheral blood leukocytes or in tissue samples of reresection or autopsy. Vector DNA was shown in the leukocytes of some patients but not in autopsy gonadal samples. The median survival time was 8.6 months, and the 12-month survival rate was 13 of 48 (27%). On MRI studies, tumor recurrence was absent in seven patients for at least 6 months and for at least 12 months in two patients, one of whom remains recurrence free at more than 24 months. Treatment-characteristic images of injection tracks and intracavity hemoglobin were apparent. In conclusion, the gene therapy is feasible and appears to be satisfactorily safe as an adjuvant to the surgical resection of recurrent GBM, but any benefit appears to be marginal. Investigation of the precise effectiveness of this gene therapy requires prospective, controlled studies.
Resumo:
Two 17-mer oligodeoxynucleotide-5'-linked-(6,7-diphenylpterin) conjugates, 2 and 3, were prepared as photosensitisers for targeting photooxidative damage to a 34-mer DNA oligodeoxynucleotide (ODN) fragment 1 representing the chimeric bcr-abl gene that is implicated in the pathogenesis of chronic myeloid leukaemia (CML). The base sequence in the 17-mer was 3'G G T A G T T A T T C C T T C T T5'. In the first of these ODN conjugates (2) the pterin was attached at its N3 atom, via a -(CH2)3OPO(OH)- linker, to the 5'-OH group of the ODN. Conjugate 2 was prepared from 2-amino-3-(3-hydroxypropyl)-6,7-diphenyl-4(3H)-pteridinone 10, using phosphoramidite methodology. Starting material 10 was prepared from 5-amino-7-methylthiofurazano[3,4-d]pyrimidine 4 via an unusual highly resonance stabilised cation 8, incorporating the rare 2H,6H-pyrimido[6,1-b][1,3]oxazine ring system. In the characterisation of 10 two pteridine phosphazenes, 15 and 29, were obtained, as well as new products containing two uncommon tricyclic ring systems, namely pyrimido[2,1-b]pteridine (20 and 24) and pyrimido[1,2-c]pteridine (27). In the second ODN conjugate the linker was -(CH2)5CONH(CH2)6OPO(OH)- and was attached to the 2-amino group of the pterin. In the preparation of 3, the N-hydroxysuccinimide ester 37 of 2-(5-carboxypentylamino)-6,7-diphenyl-4(3H)-pteridinone was condensed with the hexylamino-modified 17-mer. Excitation of 36 with near UV light in the presence of the single-stranded target 34-mer, 5'T G A C C A T C A A T A A G14 G A A G18 A A G21 C C C T T C A G C G G C C3' 1 caused oxidative damage at guanine bases, leading to alkali-labile sites which were monitored by polyacrylamide gel electrophoresis. Cleavage was observed at all guanine sites with a marked preference for cleavage at G14. In contrast, excitation of ODN-pteridine conjugate 2 in the presence of 1 caused oxidation of the latter predominantly at G18, with a smaller extent of cleavage at G15 and G14 (in the double-stranded portion) and G21. These results contrast with our previous observation of specific cleavage at G21 with ruthenium polypyridyl sensitisers, and suggest that a different mechanism, probably one involving Type 1 photochemical electron transfer, is operative. Much lower yields were found with the ODN-pteridine conjugate 3, perhaps as a consequence of the longer linker between the ODN and the pteridine in this case.
Resumo:
In this study the design and development of two real-time PCR assays for the rapid, sensitive and specific detection of infectious laryngotracheitis virus (ILTV) DNA is described. A Primer-Probe Energy Transfer (PriProET) assay and 5' conjugated Minor Groove Binder (MGB) method are compared and contrasted. Both have been designed to target the thymidine kinase gene of the ILTV genome. Both PriProET and MGB assays are capable of detecting 20 copies of a DNA standard per reaction and are linear from 2 x 10(8) to 2 x 10(2) copies/mu l. Neither PriProET, nor MGB reacted with heterologous herpesviruses, indicating a high specificity of the two methods as novel tools for virus detection and identification. This study demonstrates the suitability of PriProET and 5' conjugated MGB probes as real-time PCR chemistries for the diagnosis of respiratory diseases caused by ILTV. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this work, we demonstrate that the wbbD gene of the O7 lipopolysaccharide (LPS) biosynthesis cluster in Escherichia coli strain VW187 (O7:K1) encodes a galactosyltransferase involved in the synthesis of the O7-polysaccharide repeating unit. The galactosyltransferase catalyzed the transfer of Gal from UDP-Gal to the GlcNAc residue of a GlcNAc-pyrophosphate-lipid acceptor. A mutant strain with a defective wbbD gene was unable to form O7 LPS and lacked this specific galactosyltransferase activity. The normal phenotype was restored by complementing the mutant with the cloned wbbD gene. To characterize the WbbD galactosyltransferase, we used a novel acceptor substrate containing GlcNAcalpha-pyrophosphate covalently bound to a hydrophobic phenoxyundecyl moiety (GlcNAc alpha-O-PO(3)-PO(3)-(CH(2))(11)-O-phenyl). The WbbD galactosyltransferase had optimal activity at pH 7 in the presence of 2.5 mM MnCl(2). Detergents in the assay did not increase glycosyl transfer. Digestion of enzyme product by highly purified bovine testicular beta-galactosidase demonstrated a beta-linkage. Cleavage of product by pyrophosphatase and phosphatase, followed by HPLC and NMR analyses, revealed a disaccharide with the structure Gal beta1-3GlcNAc. Our results conclusively demonstrate that WbbD is a UDP-Gal: GlcNAcalpha-pyrophosphate-R beta1,3-galactosyltransferase and suggest that the novel synthetic glycolipid acceptor may be generally applicable to characterize other bacterial glycosyltransferases.
Resumo:
The intermediate steps in the biosynthesis of the ADP-L-glycero-D-manno-heptose precursor of inner core lipopolysaccharide (LPS) are not yet elucidated. We isolated a mini-Tn10 insertion that confers a heptoseless LPS phenotype in the chromosome of Escherichia coli K-12. The mutation was in a gene homologous to the previously reported rfaE gene from Haemophilus influenzae. The E. coli rfaE gene was cloned into an expression vector, and an in vitro transcription-translation experiment revealed a polypeptide of approximately 55 kDa in mass. Comparisons of the predicted amino acid sequence with other proteins in the database showed the presence of two clearly separate domains. Domain I (amino acids 1 to 318) shared structural features with members of the ribokinase family, while Domain II (amino acids 344 to 477) had conserved features of the cytidylyltransferase superfamily that includes the aut gene product of Ralstonia eutrophus. Each domain was expressed individually, demonstrating that only Domain I could complement the rfaE::Tn10 mutation in E. coli, as well as the rfaE543 mutation of Salmonella enterica SL1102. DNA sequencing of the rfaE543 gene revealed that Domain I had one amino acid substitution and a 12-bp in-frame deletion resulting in the loss of four amino acids, while Domain II remained intact. We also demonstrated that the aut::Tn5 mutation in R. eutrophus is associated with heptoseless LPS, and this phenotype was restored following the introduction of a plasmid expressing the E. coli Domain II. Thus, both domains of rfaE are functionally different and genetically separable confirming that the encoded protein is bifunctional. We propose that Domain I is involved in the synthesis of D-glycero-D-manno-heptose 1-phosphate, whereas Domain II catalyzes the ADP transfer to form ADP-D-glycero-D-manno-heptose.
Resumo:
Dysfunction of lipid-metabolizing proteins is implicated in the pathogenesis of coronary artery disease. Single nucleotide polymorphisms in genes that encode sterol regulatory binding protein-la, adenosine triphosphate binding cassette-A1, hepatic lipase, lipoprotein lipase, and cholesteryl ester transfer protein were assessed as potential markers of disease susceptibility in a family-based study of 1,012 patients from 386 families. Association between single nucleotide polymorphisms and coronary artery disease was tested by the combined transmission disequilibrium test/sib transmission disequilibrium test and pedigree disequilibrium test. After Bonferroni's correction, the pedigree disequilibrium test demonstrated significant excess transmission (p < 0.0083) to affected patients of the hepatic lipase -514 T allele, which suggests that this may constitute a novel disease-susceptibility locus. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Here, we show for the first time that the familial breast/ovarian cancer susceptibility gene, BRCA1, along with interacting ΔNp63 proteins, transcriptionally upregulate the putative tumour suppressor protein, S100A2. Both BRCA1 and ΔNp63 proteins are required for S100A2 expression. BRCA1 requires ΔNp63 proteins for recruitment to the S100A2 proximal promoter region, while exogenous expression of individual ΔNp63 proteins cannot activate S100A2 transcription in the absence of a functional BRCA1. Consequently, mutation of the ΔNp63/p53 response element within the S100A2 promoter completely abrogates the ability of BRCA1 to upregulate S100A2. S100A2 shows growth control features in a range of cell models. Transient or stable exogenous S100A2 expression inhibits the growth of BRCA1 mutant and basal-like breast cancer cell lines, while short interfering RNA (siRNA) knockdown of S100A2 in non-tumorigenic cells results in enhanced proliferation. S100A2 modulates binding of mutant p53 to HSP90, which is required for efficient folding of mutant p53 proteins, by competing for binding to HSP70/HSP90 organising protein (HOP). HOP is a cochaperone that is required for the efficient transfer of proteins from HSP70 to HSP90. Loss of S100A2 leads to an HSP90-dependent stabilisation of mutant p53 with a concomitant loss of p63. Accordingly, S100A2-deficient cells are more sensitive to the HSP-90 inhibitor, 17-N-allylamino-17-demethoxygeldanamycin, potentially representing a novel therapeutic strategy for S100A2- and BRCA1-deficient cancers. Taken together, these data demonstrate the importance of S100A2 downstream of the BRCA1/ΔNp63 signalling axis in modulating transcriptional responses and enforcing growth control mechanisms through destabilisation of mutant p53.
Resumo:
Résumé Le transfert du phosphate des racines vers les feuilles s'effectue par la voie du xylème. Il a été précédemment démontré que la protéine AtPHO1 était indispensable au transfert du phosphate dans les vaisseaux du xylème des racines chez la plante modèle Arabidopsis thaliana. Le séquençage et l'annotation du génome d'Arabidopsis ont permis d'identifier dix séquences présentant un niveau de similarité significatif avec le gène AtPHO1 et constituant une nouvelle famille de gène appelé la famille de AtPHO1. Basée sur une étude moléculaire et génétique, cette thèse apporte des éléments de réponse pour déterminer le rôle des membres de ia famille de AtPHO1 chez Arabidopsis, inconnue à ce jour. Dans un premier temps, une analyse bioinformatique des séquences protéiques des membres de la famille de AtPHO1 a révélé la présence dans leur région N-terminale d'un domaine nommé SPX. Ce dernier est conservé parmi de nombreuses protéines impliquées dans l'homéostasie du phosphate chez la levure, renforçant ainsi l'hypothèse que les membres de la famille de AtPHO1 auraient comme AtPHO1 un rôle dans l'équilibre du phosphate dans la plante. En parallèle, la localisation tissulaire de l'expression des gènes AtPHO dans Arabidopsis a été identifiée par l'analyse de plantes transgéniques exprimant le gène rapporteur uidA sous le contrôle des promoteurs respectifs des gènes AtPHO. Un profil d'expression de chaque gène AtPHO au cours du développement de la plante a été obtenu. Une expression prédominante au niveau des tissus vasculaires des racines, des feuilles, des tiges et des fleurs a été observée, suggérant que les gènes AtPHO pourraient avoir des fonctions redondantes au niveau du transfert de phosphate dans le cylindre vasculaire de ces différents organes. Toutefois, plusieurs régions promotrices des gènes AtPHO contrôlent également un profil d'expression GUS non-vasculaire, indiquant un rôle putatif des gènes AtPHO dans l'acquisition ou le recyclage de phosphate dans la plante. Dans un deuxième temps, l'analyse de l'expression des gènes AtPHO durant une carence en phosphate a établi que seule l'expression des gènes AtPHO1, AtPHO1; H1 et AtPHO1; H10 est régulée par cette carence. Une étude approfondie de leur expression en réponse à des traitements affectant l'homéostasie du phosphate dans la plante a ensuite démontré leur régulation par différentes voies de signalisation. Ensuite, une analyse détaillée de la régulation de l'expression du gène AtPHO1; H1O dans des feuilles d'Arabidopsis blessées ou déshydratées a révélé que ce gène constitue le premìer gène marqueur d'une nouvelle voie de signalisation induite par l'OPDA, pas par le JA et dépendante de la protéine COI1. Ces résultats démontrent pour la première fois que l'OPDA et le JA peuvent activer différents gènes via des voies de signalisation dépendantes de COI1. Enfin, cette thèse révèle l'identification d'un nouveau rôle de la protéine AtPHO1 dans la régulation de l'action de l'ABA au cours des processus de fermeture stomatique et de germination des graines chez Arabidopsis. Bien que les fonctions exactes des protéines AtPHO restent à être déterminées, ce travail de thèse suggère leur implication dans la propagation de différents signaux dans la plante via la modulation du potentiel membranaire et/ou l'affectation de la composition en ions des cellules comme le font de nombreux transporteurs ou régulateur du transport d'ions. Summary Phosphate is transferred from the roots to the shoot via the xylem. The requirement for AtPHO1 protein to transfer phosphate to the xylem vessels of the root has been previously demonstrated in Arabidopsis thaliana. The sequencing and the annotation of the Arabidopsis genome had allowed the identification of ten sequences that show a significant level of similarity with the AtPHO1 gene. These 10 genes, of unknown functions, constitute a new gene family called the AtPHO1 gene family. Based on a molecular and genetics study, this thesis reveals some information needed to understand the role of the AtPHO1 family members in the plant Arabidopsis. First, a bioinformatics study revealed that the AtPHO sequences contained, in the N-terminal hydrophilic region, a motif called SPX and conserved among multiple proteins involved in phosphate homeostasis in yeast. This finding reinforces the hypothesis that all AtPHO1 family members have, as AtPHO1, a role in phosphate homeostasis. In parallel, we identified the pattern of expression of AtPHO genes in Arabidopsis via analysis of transgenic plants expressing the uidA reporter gene under the control of respective AtPHO promoter regions. The results exhibit a predominant expression of AtPHO genes in vascular tissues of all organs of the plant, implying that these AtPHO genes could have redundant functions in the transfer of phosphate to the vascular cylinder of various organs. The GUS expression pattern for several AtPHO promoter regions was also detected in non-vascular tissue indicating a broad role of AtPHO genes in the acquisition or in the recycling of phosphate in the plant. In a second step, the analysis of the expression of AtPHO genes during phosphate starvation established that only the expression of the AtPHO1, AtPHO1; H1 and AtPHO1; H10 genes were regulated by Pi starvation. Interestingly, different signalling pathways appeared to regulate these three genes during various treatments affecting Pi homeostasis in the plant. The third chapter presents a detailed analysis of the signalling pathways regulating the expression of the AtPHO1; H10 gene in Arabidopsis leaves during wound and dehydrated stresses. Surprisingly, the expression of AtPHO1; H10 was found to be regulated by OPDA (the precursor of JA) but not by JA itself and via the COI1 protein (the central regulator of the JA signalling pathway). These results demonstrated for the first time that OPDA and JA could activate distinct genes via COI1-dependent pathways. Finally, this thesis presents the identification of a novel role of the AtPHO1 protein in the regulation of ABA action in Arabidopsis guard cells and during seed germination. Although the exact role and function of AtPHO1 still need to be determined, these last findings suggest that AtPHO1 and by extension other AtPHO proteins could mediate the propagation of various signals in the plant by modulating the membrane potential and/or by affecting cellular ion composition, as it is the case for many ion transporters or regulators of ion transport.