770 resultados para false recognition
Resumo:
This mini-review outlines recent key developments in the use of dendritic architectures in self-assembly processes via utilisation of molecular recognition motifs.
Resumo:
The utility of an "ecologically rational" recognition-based decision rule in multichoice decision problems is analyzed, varying the type of judgment required (greater or lesser). The maximum size and range of a counterintuitive advantage associated with recognition-based judgment (the "less-is-more effect") is identified for a range of cue validity values. Greater ranges of the less-is-more effect occur when participants are asked which is the greatest of to choices (m > 2) than which is the least. Less-is-more effects also have greater range for larger values of in. This implies that the classic two-altemative forced choice task, as studied by Goldstein and Gigerenzer (2002), may not be the most appropriate test case for less-is-more effects.
Resumo:
We argue that while it is a valuable contribution, Carruthers' Model may be too restrictive to elaborate our understanding of the development of mindreading and metacognition, or to enrich our knowledge of individual differences and psychopathology. To illustrate, we describe pertinent examples where there may be a critical interplay between primitive social-cognitive processes and emerging self-attributions.
Resumo:
Recognition as a cue to judgment in a novel, multi-option domain (the Sunday Times Rich List) is explored. As in previous studies, participants were found to make use of name recognition as a cue to the presumed wealth of individuals. Names that were recognized were judged to be the richest name from amongst the set presented at above chance levels. This effect persisted across situations in which more than one name was recognized; recognition was used as an inclusion criterion for the sub-set of names to be considered the richest of the set presented. However, when the question was reversed, and a “poorest” judgment was required, use of recognition as an exclusion criterion was observed only when a single name was recognized. Reaction times when making these judgments also show a distinction between “richest” and “poorest” questions with recognition of none of the options taking the longest time to judge in the “richest” question condition and full recognition of all the names presented taking longest to judge in the “poorest” question condition. Implications for decision-making using simple heuristics are discussed.
Resumo:
Frequency recognition is an important task in many engineering fields such as audio signal processing and telecommunications engineering, for example in applications like Dual-Tone Multi-Frequency (DTMF) detection or the recognition of the carrier frequency of a Global Positioning, System (GPS) signal. This paper will present results of investigations on several common Fourier Transform-based frequency recognition algorithms implemented in real time on a Texas Instruments (TI) TMS320C6713 Digital Signal Processor (DSP) core. In addition, suitable metrics are going to be evaluated in order to ascertain which of these selected algorithms is appropriate for audio signal processing(1).
Resumo:
Numerous techniques exist which can be used for the task of behavioural analysis and recognition. Common amongst these are Bayesian networks and Hidden Markov Models. Although these techniques are extremely powerful and well developed, both have important limitations. By fusing these techniques together to form Bayes-Markov chains, the advantages of both techniques can be preserved, while reducing their limitations. The Bayes-Markov technique forms the basis of a common, flexible framework for supplementing Markov chains with additional features. This results in improved user output, and aids in the rapid development of flexible and efficient behaviour recognition systems.
Resumo:
This paper presents a new face verification algorithm based on Gabor wavelets and AdaBoost. In the algorithm, faces are represented by Gabor wavelet features generated by Gabor wavelet transform. Gabor wavelets with 5 scales and 8 orientations are chosen to form a family of Gabor wavelets. By convolving face images with these 40 Gabor wavelets, the original images are transformed into magnitude response images of Gabor wavelet features. The AdaBoost algorithm selects a small set of significant features from the pool of the Gabor wavelet features. Each feature is the basis for a weak classifier which is trained with face images taken from the XM2VTS database. The feature with the lowest classification error is selected in each iteration of the AdaBoost operation. We also address issues regarding computational costs in feature selection with AdaBoost. A support vector machine (SVM) is trained with examples of 20 features, and the results have shown a low false positive rate and a low classification error rate in face verification.
Resumo:
Garment information tracking is required for clean room garment management. In this paper, we present a camera-based robust system with implementation of Optical Character Reconition (OCR) techniques to fulfill garment label recognition. In the system, a camera is used for image capturing; an adaptive thresholding algorithm is employed to generate binary images; Connected Component Labelling (CCL) is then adopted for object detection in the binary image as a part of finding the ROI (Region of Interest); Artificial Neural Networks (ANNs) with the BP (Back Propagation) learning algorithm are used for digit recognition; and finally the system is verified by a system database. The system has been tested. The results show that it is capable of coping with variance of lighting, digit twisting, background complexity, and font orientations. The system performance with association to the digit recognition rate has met the design requirement. It has achieved real-time and error-free garment information tracking during the testing.
Resumo:
We study the complex formation of a peptide betaAbetaAKLVFF, previously developed by our group, with Abeta(1–42) in aqueous solution. Circular dichroism spectroscopy is used to probe the interactions between betaAbetaAKLVFF and Abeta(1–42), and to study the secondary structure of the species in solution. Thioflavin T fluorescence spectroscopy shows that the population of fibers is higher in betaAbetaAKLVFF/Abeta(1–42) mixtures compared to pure Abeta(1–42) solutions. TEM and cryo-TEM demonstrate that co-incubation of betaAbetaAKLVFF with Abeta(1–42) causes the formation of extended dense networks of branched fibrils, very different from the straight fibrils observed for Abeta(1–42) alone. Neurotoxicity assays show that although betaAbetaAKLVFF alters the fibrillization of Abeta(1–42), it does not decrease the neurotoxicity, which suggests that toxic oligomeric Abeta(1–42) species are still present in the betaAbetaAKLVFF/Abeta(1–42) mixtures. Our results show that our designed peptide binds to Abeta(1–42) and changes the amyloid fibril morphology. This is shown to not necessarily translate into reduced toxicity.
Resumo:
Sequence-specific binding is demonstrated between pyrene-based tweezer molecules and soluble, high molar mass copolyimides. The binding involves complementary pi - pi stacking interactions, polymer chain-folding, and hydrogen bonding and is extremely sensitive to the steric environment around the pyromellitimide binding-site. A detailed picture of the intermolecular interactions involved has been obtained through single-crystal X-ray studies of tweezer complexes with model diimides. Ring-current magnetic shielding of polyimide protons by the pyrene '' arms '' of the tweezer molecule induces large complexation shifts of the corresponding H-1 NMR resonances, enabling specific triplet sequences to be identified by their complexation shifts. Extended comonomer sequences (triplets of triplets in which the monomer residues differ only by the presence or absence of a methyl group) can be '' read '' by a mechanism which involves multiple binding of tweezer molecules to adjacent diimide residues within the copolymer chain. The adjacent-binding model for sequence recognition has been validated by two conceptually different sets of tweezer binding experiments. One approach compares sequence-recognition events for copolyimides having either restricted or unrestricted triple-triplet sequences, and the other makes use of copolymers containing both strongly binding and completely nonbinding diimide residues. In all cases the nature and relative proportions of triple-triplet sequences predicted by the adjacent-binding model are fully consistent with the observed H-1 NMR data.