990 resultados para engineering mechanics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Project focused group work is significant in developing social and personal skills as well as extending the ability to identify, formulate and solve engineering problems. As a result of increasing undergraduate class sizes, along with the requirement for many students to work part-time, group projects, peer and collaborative learning are seen as a fundamental part of engineering education. Group formation, connection to learning objectives and fairness of assessment has been widely reported as major issues that leave students dissatisfied with group project based units. Several strategies were trialled including a study of formation of groups by different methods across two engineering disciplines over the past 2 years. Other strategies involved a more structured approach to assessment practices of civil and electrical engineering disciplines design units. A confidential online teamwork management tool was used to collect and collate student self and peer assessment ratings and used for both formative feedback as well as assessment purposes. Student satisfaction and overall academic results in these subjects have improved since the introduction of these interventions. Both student and staff feedback highlight this approach as enhancing student engagement and satisfaction, improved student understanding of group roles, reducing number of dysfunctional groups whilst requiring less commitment of academic resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an atmosphere where civilization is progressing and becoming more aware of the consequences of careless development decisions, rethinking sustainable development - particularly sustainable urban and infrastructure development - has become an inevitable necessity. ------ ----- Rethinking Sustainable Development: Urban Management, Engineering, and Design considers the role of urban, regional and infrastructure planning in achieving sustainable urban and infrastructure development, providing insights into overcoming the consequences of unsustainable development. This companion volume to Sustainable Urban and Regional Infrastructure: Technology, Planning and Management, overviews all aspects of sustainable urban and infrastructure development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper details the results of the first phase of an on-going research into the sociocultural factors that influence the supervision of higher degrees research (HDR) engineering students in the Faculty of Built Environment and Engineering (BEE) and Faculty of Science and Technology (FaST) at Queensland University of Technology. A quantitative analysis was performed on the results from an online survey that was administered to 179 engineering students. The study reveals that cultural barriers impact their progression and developing confidence in their research programs. We argue that in order to assist international and non-English speaking background (NESB) research students to triumph over such culturally embedded challenges in engineering research, it is important for supervisors to understand this cohort's unique pedagogical needs and develop intercultural sensitivity in their pedagogical practice in postgraduate research supervision. To facilitate this, the governing body (Office of Research) can play a vital role in not only creating the required support structures but also their uniform implementation across the board.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite element numerical simulation is carried out to examine stress distributions on railhead in the cicinity of the endpost of an insulated rail joint. The contact patch and pressure distribution are considered using modified Hertzian simulation. A combined elasto-plastic material modelling available in Abaqus is employed in the simulation. A dynamic load factor of 1.21 is considered in modelling for the wheel load based on a previous study as part of this on going research. Shakedown theorem is employed in this study. A peak pressure load which is above the shakedown limit is determined as input load. As a result, a progressive damage in the railhead has been captured as depicted in the equivalent plastic strain plot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the 21st century's global economy, the new challenges facing the engineering profession have arrived, confirming the need to restructure engineering curricula, teaching and learning practices, and processes, including assessment. Possessing merely technical knowledge no longer guarantees an engineering graduate a successful career. And while all countries are facing this dilemma, India is struggling the most. It has been argued that most Indian engineering educational institutions struggle with the systemic problem of centralisation coupled with an archaic examination system that is detrimental to student learning. This article examines some internationally renowned educational institutions that are embracing the growing importance of non-technical subjects and soft skills in 21st century engineering curricula. It will then examine the problems that India faces in doing the same.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This manuscript took a 'top down' approach to understanding survival of inhabitant cells in the ecosystem bone, working from higher to lower length and time scales through the hierarchical ecosystem of bone. Our working hypothesis is that nature “engineered” the skeleton using a 'bottom up' approach,where mechanical properties of cells emerge from their adaptation to their local me-chanical milieu. Cell aggregation and formation of higher order anisotropic struc- ture results in emergent architectures through cell differentiation and extracellular matrix secretion. These emergent properties, including mechanical properties and architecture, result in mechanical adaptation at length scales and longer time scales which are most relevant for the survival of the vertebrate organism [Knothe Tate and von Recum 2009]. We are currently using insights from this approach to har-ness nature’s regeneration potential and to engineer novel mechanoactive materials [Knothe Tate et al. 2007, Knothe Tate et al. 2009]. In addition to potential applications of these exciting insights, these studies may provide important clues to evolution and development of vertebrate animals. For instance, one might ask why mesenchymal stem cells condense at all? There is a putative advantage to self-assembly and cooperation, but this advantage is somewhat outweighed by the need for infrastructural complexity (e.g., circulatory systems comprised of specific differentiated cell types which in turn form conduits and pumps to overcome limitations of mass transport via diffusion, for example; dif-fusion is untenable for multicellular organisms larger than 250 microns in diameter. A better question might be: Why do cells build skeletal tissue? Once cooperatingcells in tissues begin to deplete local sources of food in their aquatic environment, those that have evolved a means to locomote likely have an evolutionary advantage. Once the environment becomes less aquarian and more terrestrial, self-assembled organisms with the ability to move on land might have conferred evolutionary ad-vantages as well. So did the cytoskeleton evolve several length scales, enabling the emergence of skeletal architecture for vertebrate animals? Did the evolutionary advantage of motility over noncompliant terrestrial substrates (walking on land) favor adaptations including emergence of intracellular architecture (changes in the cytoskeleton and upregulation of structural protein manufacture), inter-cellular con- densation, mineralization of tissues, and emergence of higher order architectures?How far does evolutionary Darwinism extend and how can we exploit this knowl- edge to engineer smart materials and architectures on Earth and new, exploratory environments?[Knothe Tate et al. 2008]. We are limited only by our ability to imagine. Ultimately, we aim to understand nature, mimic nature, guide nature and/or exploit nature’s engineering paradigms without engineer-ing ourselves out of existence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an enriched radial point interpolation method (e-RPIM) is developed the for the determination of crack tip fields. In e-RPIM, the conventional RBF interpolation is novelly augmented by the suitable trigonometric basis functions to reflect the properties of stresses for the crack tip fields. The performance of the enriched RBF meshfree shape functions is firstly investigated to fit different surfaces. The surface fitting results have proven that, comparing with the conventional RBF shape function, the enriched RBF shape function has: (1) a similar accuracy to fit a polynomial surface; (2) a much better accuracy to fit a trigonometric surface; and (3) a similar interpolation stability without increase of the condition number of the RBF interpolation matrix. Therefore, it has proven that the enriched RBF shape function will not only possess all advantages of the conventional RBF shape function, but also can accurately reflect the properties of stresses for the crack tip fields. The system of equations for the crack analysis is then derived based on the enriched RBF meshfree shape function and the meshfree weak-form. Several problems of linear fracture mechanics are simulated using this newlydeveloped e-RPIM method. It has demonstrated that the present e-RPIM is very accurate and stable, and it has a good potential to develop a practical simulation tool for fracture mechanics problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the 21st century's global economy, the new challenges facing the engineering profession have arrived, confirming the need to restructure engineering curricula, teaching and learning practices, and processes, including assessment. Possessing merely technical knowledge no longer guarantees an engineering graduate a successful career. And while all countries are facing this dilemma, India is struggling the most. It has been argued that most Indian engineering educational institutions struggle with the systemic problem of centralisation coupled with an archaic examination system that is detrimental to student learning. This article examines some internationally renowned educational institutions that are embracing the growingimportance of non-technical subjects and soft skills in 21st century engineering curricula. It will then examine the problems that India faces in doing the same.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with some plane strain and axially symmetric free surface problems which arise in the study of static granular solids that satisfy the Coulomb-Mohr yield condition. Such problems are inherently nonlinear, and hence difficult to attack analytically. Given a Coulomb friction condition holds on a solid boundary, it is shown that the angle a free surface is allowed to attach to the boundary is dependent only on the angle of wall friction, assuming the stresses are all continuous at the attachment point, and assuming also that the coefficient of cohesion is nonzero. As a model problem, the formation of stable cohesive arches in hoppers is considered. This undesirable phenomena is an obstacle to flow, and occurs when the hopper outlet is too small. Typically, engineers are concerned with predicting the critical outlet size for a given hopper and granular solid, so that for hoppers with outlets larger than this critical value, arching cannot occur. This is a topic of considerable practical interest, with most accepted engineering methods being conservative in nature. Here, the governing equations in two limiting cases (small cohesion and high angle of internal friction) are considered directly. No information on the critical outlet size is found; however solutions for the shape of the free boundary (the arch) are presented, for both plane and axially symmetric geometries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under certain circumstances, an industrial hopper which operates under the "funnel-flow" regime can be converted to the "mass-flow" regime with the addition of a flow-corrective insert. This paper is concerned with calculating granular flow patterns near the outlet of hoppers that incorporate a particular type of insert, the cone-in-cone insert. The flow is considered to be quasi-static, and governed by the Coulomb-Mohr yield condition together with the non-dilatant double-shearing theory. In two dimensions, the hoppers are wedge-shaped, and as such the formulation for the wedge-in-wedge hopper also includes the case of asymmetrical hoppers. A perturbation approach, valid for high angles of internal friction, is used for both two-dimensional and axially symmetric flows, with analytic results possible for both leading order and correction terms. This perturbation scheme is compared with numerical solutions to the governing equations, and is shown to work very well for angles of internal friction in excess of 45 degree.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the embedded atom method (EAM), a molecular dynamics (MD) simulation is performed to study the single-crystal copper nanowire with surface defects through tension. The tension simulations for nanowire without defect are first carried out under different temperatures, strain rates and time steps and then surface defect effects for nanowire are investigated. The stress-strain curves obtained by the MD simulations of various strain rates show a rate below 1 x 10(9) s-1 will exert less effect on the yield strength and yield point, and the Young's modulus is independent of strain rate. a time step below 5 fs is recommend for the atomic model during the MD simulation. It is observed that high temperature leads to low Young's modulus, as well as the yield strength. The surface defects on nanowires are systematically studied in considering different defect orientations. It is found that the surface defect serves as a dislocation source, and the yield strength shows 34.20% decresse with 45 degree surface defect. Both yield strength and yield point are significantly influenced by the surface defects, except the Young's modulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a multiscale study using the coupled Meshless technique/Molecular Dynamics (M2) for exploring the deformation mechanism of mono-crystalline metal (focus on copper) under uniaxial tension. In M2, an advanced transition algorithm using transition particles is employed to ensure the compatibility of both displacements and their gradients, and an effective local quasi-continuum approach is also applied to obtain the equivalent continuum strain energy density based on the atomistic poentials and Cauchy-Born rule. The key parameters used in M2 are firstly investigated using a benchmark problem. Then M2 is applied to the multiscale simulation for a mono-crystalline copper bar. It has found that the mono-crystalline copper has very good elongation property, and the ultimate strength and Young's modulus are much higher than those obtained in macro-scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the practical but challenging problem of motion planning for a deeply submerged rigid body. Here, we formulate the dynamic equations of motion of a submerged rigid body under the architecture of differential geometric mechanics and include external dissipative and potential forces. The mechanical system is represented as a forced affine-connection control system on the configuration space SE(3). Solutions to the motion planning problem are computed by concatenating and reparameterizing the integral curves of decoupling vector fields. We provide an extension to this inverse kinematic method to compensate for external potential forces caused by buoyancy and gravity. We present a mission scenario and implement the theoretically computed control strategy onto a test-bed autonomous underwater vehicle. This scenario emphasizes the use of this motion planning technique in the under-actuated situation; the vehicle loses direct control on one or more degrees of freedom. We include experimental results to illustrate our technique and validate our method.