945 resultados para dynamic load sharing
Resumo:
This paper presents Multi-Step A* (MSA*), a search algorithm based on A* for multi-objective 4D vehicle motion planning (three spatial and one time dimension). The research is principally motivated by the need for offline and online motion planning for autonomous Unmanned Aerial Vehicles (UAVs). For UAVs operating in large, dynamic and uncertain 4D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles and the rules of the air. It is shown that MSA* finds a cost optimal solution using variable length, angle and velocity trajectory segments. These segments are approximated with a grid based cell sequence that provides an inherent tolerance to uncertainty. Computational efficiency is achieved by using variable successor operators to create a multi-resolution, memory efficient lattice sampling structure. Simulation studies on the UAV flight planning problem show that MSA* meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of vector neighbourhood based A*.
Resumo:
This paper is a report of students' responses to instruction which was based on the use of concrete representations to solve linear equations. The sample consisted of 21 Grade 8 students from a middle-class suburban state secondary school with a reputation for high academic standards and innovative mathematics teaching. The students were interviewed before and after instruction. Interviews and classroom interactions were observed and videotaped. A qualitative analysis of the responses revealed that students did not use the materials in solving problems. The increased processing load caused by concrete representations is hypothesised as a reason.
Resumo:
An experimental programme in 2007 used three air suspended heavy vehicles travelling over typical urban roads to determine whether dynamic axle-to-chassis forces could be reduced by using larger-than-standard diameter longitudinal air lines. This paper presents methodology, interim analysis and partial results from that programme. Alterations to dynamic measures derived from axle-to-chassis forces for the case of standard-sized longitudinal air lines vs. the test case where larger longitudinal air lines were fitted are presented and discussed. This leads to conclusions regarding the possibility that dynamic loadings between heavy vehicle suspensions and chassis may be reduced by fitting larger longitudinal air lines to air-suspended heavy vehicles. Reductions in the shock and vibration loads to heavy vehicle suspension components could lead to lighter and more economical chassis and suspensions. This could therefore lead to reduced tare and increased payloads without an increase in gross vehicle mass.
Resumo:
Creative Commons (CC) is often seen as a social movement, dismissed by critics as a tool for hobbyists or academics who do not sell their creations to make a living. However, this paper argues that the licensing of creative copyright works under a CC licence does not preclude commercial gain. If used wisely, CC licences can be a useful tool for creators in their quest for commercial success. In particular, this paper argues that the sharing of creative works online under a CC licence allows creators to circumvent traditional distribution channels dominated by content intermediaries, whilst maintaining a level of control over their copyright works (i.e. explicitly reserving some rights but not all rights). This will be illustrated by case studies on how CC is being used by content creators and intermediaries respectively, and how successful their respective methods are in harnessing this tool.
Resumo:
This paper presents the results of testing to determine pavement forces from three heavy vehicles (HVs). The HVs were instrumented to measure their wheel forces. A “novel roughness” value of the roads during testing is also derived. The various dynamic pavement forces are presented according to the range of novel roughness of pavement surfacings encountered during testing. The paper then examines the relationship between the two derived wavelengths predominant within the HV suspensions; those of axle hop and body-bounce. How these may be considered as contributing to spatial repetition of pavement forces from HVs is discussed. The paper concludes that pavement models need to be revised since dynamic forces from HVs in particular are not generally considered in current pavement design.
Resumo:
This paper presents the outcome of investigations and studies of the vibratioon characteristics and response of low frequency structural systems for a composite concrete steel floor plate and a reverse profiled cable tensioned foot bridge. These highly dynamic and slender structure are the engineering response to planning, aesthetic and environmental influences, but are prone to excessive and complex vibration. A number of design codes and practice guides provided information to engineers for vibration mitigation However, they are limited to very simple load function applied to a few uncoupled translational modes of excitation. Motivated by the need to address the knowledge gaps in this area, the investigations described in this paper focused on synchronous multi-modal and coupled excitation of the floor plate and footbridge with considerations for torsinal effects. The results showed the potential for adverse dynamic response from multi-modal and coupled excitation influenced by patterned loading, structure geometry, stiffness distribution, directional effects, forcing functions based on activity frequency and duration of foot contact, and modal participation. It was also shown that higher harmonics of the load frequency can excite higher modes in the composite floor structure. Such responsive behaviour is prevalent mainly in slender and lightweight construction and not in stiffer and heavier structural systems. The analytical techniques and methods used in these investigations can supplement the current limited code and best practice provisions for mitigating the impact of human induced vibrations in slender structural systems.
Resumo:
BACKGROUND: Treatment of proximal humerus fractures in elderly patients is challenging because of reduced bone quality. We determined the in vitro characteristics of a new implant developed to target the remaining bone stock, and compared it with an implant in clinical use. METHODS: Following osteotomy, left and right humeral pairs from cadavers were treated with either the Button-Fix or the Humerusblock fixation system. Implant stiffness was determined for three clinically relevant cases of load: axial compression, torsion, and varus bending. In addition, a cyclic varus-bending test was performed. RESULTS: We found higher stiffness values for the humeri treated with the ButtonFix system--with almost a doubling of the compression, torsion, and bending stiffness values. Under dynamic loading, the ButtonFix system had superior stiffness and less K-wire migration compared to the Humerusblock system. INTERPRETATION: When compared to the Humerusblock design, the ButtonFix system showed superior biomechanical properties, both static and dynamic. It offers a minimally invasive alternative for the treatment of proximal humerus fractures.
Resumo:
This chapter considers how teachers can make a difference to the kinds of literacy young people take up. Increasingly, researchers and policy-makers see literacy as an ensemble of socio-cultural situated practices rather than as a unitary skill. Accordingly, the differences in what young people come to do with literacy, in and out of school, confront us more directly. If literacy development involves assembling dynamic repertoires of practices, it is crucial to consider what different groups of children growing up and going to school in different places have access to and make investments in over time; the kinds of literate communities from which some are excluded or included; and how educators make a difference to the kinds of literate trajectories and identities young people put together.
Resumo:
The study investigated the effect on learning of four different instructional formats used to teach assembly procedures. Cognitive load and spatial information processing theories were used to generate the instructional material. The first group received a physical model to study, the second an isometric drawing, the third an isometric drawing plus a model and the fourth an orthographic drawing. Forty secondary school students were presented with the four different instructional formats and subsequently tested on an assembly task. The findings indicated that there may be evidence to argue that the model format which only required encoding of an already constructed three dimensional representation, caused less extraneous cognitive load compared to the isometric and the orthographic formats. No significant difference was found between the model and the isometric-plus-model formats on all measures because 80% of the students in the isometric-plus-model format chose to use the model format only. The model format also did not differ significantly from other groups in total time taken to complete the assembly, in number of correctly assembled pieces and in time spent on studying the tasks. However, the model group had significantly more correctly completed models and required fewer extra looks than the other groups.
Resumo:
Cognitive load theory was used to generate a series of three experiments to investigate the effects of various worked example formats on learning orthographic projection. Experiments 1 and 2 investigated the benefits of presenting problems, conventional worked examples incorporating the final 2-D and 3-D representations only, and modified worked examples with several intermediate stages of rotation between the 2-D and 3-D representations. Modified worked examples proved superior to conventional worked examples without intermediate stages while conventional worked examples were, in turn, superior to problems. Experiment 3 investigated the consequences of varying the number and location of intermediate stages in the rotation trajectory and found three stages to be superior to one. A single intermediate stage was superior when nearer the 2-D than the 3-D end of the trajectory. It was concluded that (a) orthographic projection is learned best using worked examples with several intermediate stages and that (b) a linear relation between angle of rotation and problem difficulty did not hold for orthographic projection material. Cognitive load theory could be used to suggest the ideal location of the intermediate stages.
Resumo:
This research provides a systematic and theoretical analysis of the digital challenges to the established exclusive regime of the economic rights enjoyed by authors (and related rightholders) under the law of copyright. Accordingly, this research has developed a relational theory of authorship and a relational approach to copyright, contending that the regulatory emphasis of copyright law should focus on the facilitation of the dynamic relations between the culture, the creators, the future creators, the users and the public, rather than the allocation of resources in a static world. In this networked digital world, the creative works and contents have become increasingly vital for people to engage in creativity and cultural innovation, and for the evolution of the economy. Hence, it is argued that today copyright owners, as content holders, have certain obligations to make their works accessible and available to the public under fair conditions. This research sets forward a number of recommendations for the reform of the current copyright system.
Resumo:
Different from conventional methods for structural reliability evaluation, such as, first/second-order reliability methods (FORM/SORM) or Monte Carlo simulation based on corresponding limit state functions, a novel approach based on dynamic objective oriented Bayesian network (DOOBN) for prediction of structural reliability of a steel bridge element has been proposed in this paper. The DOOBN approach can effectively model the deterioration processes of a steel bridge element and predict their structural reliability over time. This approach is also able to achieve Bayesian updating with observed information from measurements, monitoring and visual inspection. Moreover, the computational capacity embedded in the approach can be used to facilitate integrated management and maintenance optimization in a bridge system. A steel bridge girder is used to validate the proposed approach. The predicted results are compared with those evaluated by FORM method.