851 resultados para driver information systems, genetic algorithms, prediction theory, transportation
Resumo:
La eliminación de barreras entre países es una consecuencia que llega con la globalización y con los acuerdos de TLC firmados en los últimos años. Esto implica un crecimiento significativo del comercio exterior, lo cual se ve reflejado en un aumento de la complejidad de la cadena de suministro de las empresas. Debido a lo anterior, se hace necesaria la búsqueda de alternativas para obtener altos niveles de productividad y competitividad dentro de las empresas en Colombia, ya que el entorno se ha vuelto cada vez más complejo, saturado de competencia no sólo nacional, sino también internacional. Para mantenerse en una posición competitiva favorable, las compañías deben enfocarse en las actividades que le agregan valor a su negocio, por lo cual una de las alternativas que se están adoptando hoy en día es la tercerización de funciones logísticas a empresas especializadas en el manejo de estos servicios. Tales empresas son los Proveedores de servicios logísticos (LSP), quienes actúan como agentes externos a la organización al gestionar, controlar y proporcionar actividades logísticas en nombre de un contratante. Las actividades realizadas pueden incluir todas o parte de las actividades logísticas, pero como mínimo la gestión y ejecución del transporte y almacenamiento deben estar incluidos (Berglund, 2000). El propósito del documento es analizar el papel de los Operadores Logísticos de Tercer nivel (3PL) como promotores del desempeño organizacional en las empresas colombianas, con el fin de informar a las MIPYMES acerca de los beneficios que se obtienen al trabajar con LSP como un medio para mejorar la posición competitiva del país.
Resumo:
This paper presents a strategy for the solution of the WDM optical networks planning. Specifically, the problem of Routing and Wavelength Allocation (RWA) in order to minimize the amount of wavelengths used. In this case, the problem is known as the Min-RWA. Two meta-heuristics (Tabu Search and Simulated Annealing) are applied to take solutions of good quality and high performance. The key point is the degradation of the maximum load on the virtual links in favor of minimization of number of wavelengths used; the objective is to find a good compromise between the metrics of virtual topology (load in Gb/s) and of the physical topology (quantity of wavelengths). The simulations suggest good results when compared to some existing in the literature.
Resumo:
The continuous growth of peer-to-peer networks has made them responsible for a considerable portion of the current Internet traffic. For this reason, improvements in P2P network resources usage are of central importance. One effective approach for addressing this issue is the deployment of locality algorithms, which allow the system to optimize the peers` selection policy for different network situations and, thus, maximize performance. To date, several locality algorithms have been proposed for use in P2P networks. However, they usually adopt heterogeneous criteria for measuring the proximity between peers, which hinders a coherent comparison between the different solutions. In this paper, we develop a thoroughly review of popular locality algorithms, based on three main characteristics: the adopted network architecture, distance metric, and resulting peer selection algorithm. As result of this study, we propose a novel and generic taxonomy for locality algorithms in peer-to-peer networks, aiming to enable a better and more coherent evaluation of any individual locality algorithm.
Resumo:
This paper presents a free software tool that supports the next-generation Mobile Communications, through the automatic generation of models of components and electronic devices based on neural networks. This tool enables the creation, training, validation and simulation of the model directly from measurements made on devices of interest, using an interface totally oriented to non-experts in neural models. The resulting model can be exported automatically to a traditional circuit simulator to test different scenarios.
Resumo:
Market-based transmission expansion planning gives information to investors on where is the most cost efficient place to invest and brings benefits to those who invest in this grid. However, both market issue and power system adequacy problems are system planers’ concern. In this paper, a hybrid probabilistic criterion of Expected Economical Loss (EEL) is proposed as an index to evaluate the systems’ overall expected economical losses during system operation in a competitive market. It stands on both investors’ and planner’s point of view and will further improves the traditional reliability cost. By applying EEL, it is possible for system planners to obtain a clear idea regarding the transmission network’s bottleneck and the amount of losses arises from this weak point. Sequentially, it enables planners to assess the worth of providing reliable services. Also, the EEL will contain valuable information for moneymen to undertake their investment. This index could truly reflect the random behaviors of power systems and uncertainties from electricity market. The performance of the EEL index is enhanced by applying Normalized Coefficient of Probability (NCP), so it can be utilized in large real power systems. A numerical example is carried out on IEEE Reliability Test System (RTS), which will show how the EEL can predict the current system bottleneck under future operational conditions and how to use EEL as one of planning objectives to determine future optimal plans. A well-known simulation method, Monte Carlo simulation, is employed to achieve the probabilistic characteristic of electricity market and Genetic Algorithms (GAs) is used as a multi-objective optimization tool.
Resumo:
This paper discusses an object-oriented neural network model that was developed for predicting short-term traffic conditions on a section of the Pacific Highway between Brisbane and the Gold Coast in Queensland, Australia. The feasibility of this approach is demonstrated through a time-lag recurrent network (TLRN) which was developed for predicting speed data up to 15 minutes into the future. The results obtained indicate that the TLRN is capable of predicting speed up to 5 minutes into the future with a high degree of accuracy (90-94%). Similar models, which were developed for predicting freeway travel times on the same facility, were successful in predicting travel times up to 15 minutes into the future with a similar degree of accuracy (93-95%). These results represent substantial improvements on conventional model performance and clearly demonstrate the feasibility of using the object-oriented approach for short-term traffic prediction. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This paper seeks to understand how software systems and organisations co-evolve in practice and how order emerges in the overall environment. Using a metaphor of timetable as a commons, we analyse the introduction of a novel academic scheduling system to demonstrate how Complex Adaptive Systems theory provides insight into the adaptive behaviour of the various actors and how their action is both a response to and a driver of co-evolution within the engagement.
Resumo:
In this work, we take advantage of association rule mining to support two types of medical systems: the Content-based Image Retrieval (CBIR) systems and the Computer-Aided Diagnosis (CAD) systems. For content-based retrieval, association rules are employed to reduce the dimensionality of the feature vectors that represent the images and to improve the precision of the similarity queries. We refer to the association rule-based method to improve CBIR systems proposed here as Feature selection through Association Rules (FAR). To improve CAD systems, we propose the Image Diagnosis Enhancement through Association rules (IDEA) method. Association rules are employed to suggest a second opinion to the radiologist or a preliminary diagnosis of a new image. A second opinion automatically obtained can either accelerate the process of diagnosing or to strengthen a hypothesis, increasing the probability of a prescribed treatment be successful. Two new algorithms are proposed to support the IDEA method: to pre-process low-level features and to propose a preliminary diagnosis based on association rules. We performed several experiments to validate the proposed methods. The results indicate that association rules can be successfully applied to improve CBIR and CAD systems, empowering the arsenal of techniques to support medical image analysis in medical systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
An important feature of some conceptual modelling grammars is the features they provide to allow database designers to show real-world things may or may not possess a particular attribute or relationship. In the entity-relationship model, for example, the fact that a thing may not possess an attribute can be represented by using a special symbol to indicate that the attribute is optional. Similarly, the fact that a thing may or may not be involved in a relationship can be represented by showing the minimum cardinality of the relationship as zero. Whether these practices should be followed, however, is a contentious issue. An alternative approach is to eliminate optional attributes and relationships from conceptual schema diagrams by using subtypes that have only mandatory attributes and relationships. In this paper, we first present a theory that led us to predict that optional attributes and relationships should be used in conceptual schema diagrams only when users of the diagrams require a surface-level understanding of the domain being represented by the diagrams. When users require a deep-level understanding, however, optional attributes and relationships should not be used because they undermine users' abilities to grasp important domain semantics. We describe three experiments which we then undertook to test our predictions. The results of the experiments support our predictions.
Resumo:
In this paper, we develop a theory for diffusion and flow of pure sub-critical adsorbates in microporous activated carbon over a wide range of pressure, ranging from very low to high pressure, where capillary condensation is occurring. This theory does not require any fitting parameter. The only information needed for the prediction is the complete pore size distribution of activated carbon. The various interesting behaviors of permeability versus loading are observed such as the maximum permeability at high loading (occurred at about 0.8-0.9 relative pressure). The theory is tested with diffusion and flow of benzene through a commercial activated carbon, and the agreement is found to be very good in the light that there is no fitting parameter in the model. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Management are keen to maximize the life span of an information system because of the high cost, organizational disruption, and risk of failure associated with the re-development or replacement of an information system. This research investigates the effects that various factors have on an information system's life span by understanding how the factors affect an information system's stability. The research builds on a previously developed two-stage model of information system change whereby an information system is either in a stable state of evolution in which the information system's functionality is evolving, or in a state of revolution, in which the information system is being replaced because it is not providing the functionality expected by its users. A case study surveyed a number of systems within one organization. The aim was to test whether a relationship existed between the base value of the volatility index (a measure of the stability of an information system) and certain system characteristics. Data relating to some 3000 user change requests covering 40 systems over a 10-year period were obtained. The following factors were hypothesized to have significant associations with the base value of the volatility index: language level (generation of language of construction), system size, system age, and the timing of changes applied to a system. Significant associations were found in the hypothesized directions except that the timing of user changes was not associated with any change in the value of the volatility index. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
Two stock-market simulation experiments investigated the notion that rumors that invoke stable-cause attributions spawn illusory associations and less regressive predictions and behavior. In Study 1, illusory perceptions of association and stable causation (rumors caused price changes on the day after they appeared) existed despite rigorous conditions of nonassociation (price changes were unrelated to rumors). Predictions (recent price trends will continue) and trading behavior (departures from a strong buy-low-sell-high strategy) were both anti-regressive. In Study 2, stability of attribution was manipulated via a computerized tutorial. Participants taught to view price-changes as caused by stable forces predicted less regressively and departed more from buy-low-sell-high trading patterns than those taught to perceive changes as caused by unstable forces. Results inform a social cognitive and decision theoretic understanding of rumor by integrating it with causal attribution, covariation detection, and prediction theory. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
Intensive use of Distributed Generation (DG) represents a change in the paradigm of power systems operation making small-scale energy generation and storage decision making relevant for the whole system. This paradigm led to the concept of smart grid for which an efficient management, both in technical and economic terms, should be assured. This paper presents a new approach to solve the economic dispatch in smart grids. The proposed methodology for resource management involves two stages. The first one considers fuzzy set theory to define the natural resources range forecast as well as the load forecast. The second stage uses heuristic optimization to determine the economic dispatch considering the generation forecast, storage management and demand response
Resumo:
Mestrado em Engenharia Informática
Resumo:
This paper studies the optimization of complex-order algorithms for the discrete-time control of linear and nonlinear systems. The fundamentals of fractional systems and genetic algorithms are introduced. Based on these concepts, complexorder control schemes and their implementation are evaluated in the perspective of evolutionary optimization. The results demonstrate not only that complex-order derivatives constitute a valuable alternative for deriving control algorithms, but also the feasibility of the adopted optimization strategy.