927 resultados para distributions to shareholders
Resumo:
In this paper we explore classification techniques for ill-posed problems. Two classes are linearly separable in some Hilbert space X if they can be separated by a hyperplane. We investigate stable separability, i.e. the case where we have a positive distance between two separating hyperplanes. When the data in the space Y is generated by a compact operator A applied to the system states ∈ X, we will show that in general we do not obtain stable separability in Y even if the problem in X is stably separable. In particular, we show this for the case where a nonlinear classification is generated from a non-convergent family of linear classes in X. We apply our results to the problem of quality control of fuel cells where we classify fuel cells according to their efficiency. We can potentially classify a fuel cell using either some external measured magnetic field or some internal current. However we cannot measure the current directly since we cannot access the fuel cell in operation. The first possibility is to apply discrimination techniques directly to the measured magnetic fields. The second approach first reconstructs currents and then carries out the classification on the current distributions. We show that both approaches need regularization and that the regularized classifications are not equivalent in general. Finally, we investigate a widely used linear classification algorithm Fisher's linear discriminant with respect to its ill-posedness when applied to data generated via a compact integral operator. We show that the method cannot stay stable when the number of measurement points becomes large.
Resumo:
Small propagules like pollen or fungal spores may be dispersed by the wind over distances of hundreds or thousands of kilometres,even though the median dispersal may be only a few metres. Such long-distance dispersal is a stochastic event which may be exceptionally important in shaping a population. It has been found repeatedly in field studies that subpopulations of wind-dispersed fungal pathogens virulent on cultivars with newly introduced, effective resistance genes are dominated by one or very few genotypes. The role of propagule dispersal distributions with distinct behaviour at long distances in generating this characteristic population structure was studied by computer simulation of dispersal of clonal organisms in a heterogeneous environment with fields of unselective and selective hosts. Power-law distributions generated founder events in which new, virulent genotypes rapidly colonized fields of resistant crop varieties and subsequently dominated the pathogen population on both selective and unselective varieties, in agreement with data on rust and powdery mildew fungi. An exponential dispersal function, with extremely rare dispersal over long distances, resulted in slower colonization of resistant varieties by virulent pathogens or even no colonization if the distance between susceptible source and resistant target fields was sufficiently large. The founder events resulting from long-distance dispersal were highly stochastic and exact quantitative prediction of genotype frequencies will therefore always be difficult.
Resumo:
Escherichia coli, the most common cause of bacteraemia in humans in the UK, can also cause serious diseases in animals. However the population structure, virulence and antimicrobial resistance genes of those from extraintestinal organs of livestock animals are poorly characterised. The aims of this study were to investigate the diversity of these isolates from livestock animals and to understand if there was any correlation between the virulence and antimicrobial resistance genes and the genetic backbone of the bacteria and if these isolates were similar to those isolated from humans. Here 39 E. coli isolates from liver (n=31), spleen (n=5) and blood (n=3) of cattle (n=34), sheep (n=3), chicken (n=1) and pig (n=1) were assigned to 19 serogroups with O8 being the most common (n=7), followed by O101, O20 (both n=3) and O153 (n=2). They belong to 29 multi-locus sequence types, 20 clonal complexes with ST23 (n=7), ST10 (n=6), ST117 and ST155 (both n=3) being most common and were distributed among phylogenetic group A (n=16), B1 (n=12), B2 (n=2) and D (n=9). The pattern of a subset of putative virulence genes was different in almost all isolates. No correlation between serogroups, animal hosts, MLST types, virulence and antimicrobial resistance genes was identified. The distributions of clonal complexes and virulence genes were similar to other extraintestinal or commensal E. coli from humans and other animals, suggesting a zoonotic potential. The diverse and various combinations of virulence genes implied that the infections were caused by different mechanisms and infection control will be challenging.
Resumo:
This paper explores the sensitivity of Atmospheric General Circulation Model (AGCM) simulations to changes in the meridional distribution of sea surface temperature (SST). The simulations are for an aqua-planet, a water covered Earth with no land, orography or sea-ice and with specified zonally symmetric SST. Simulations from 14 AGCMs developed for Numerical Weather Prediction and climate applications are compared. Four experiments are performed to study the sensitivity to the meridional SST profile. These profiles range from one in which the SST gradient continues to the equator to one which is flat approaching the equator, all with the same maximum SST at the equator. The zonal mean circulation of all models shows strong sensitivity to latitudinal distribution of SST. The Hadley circulation weakens and shifts poleward as the SST profile flattens in the tropics. One question of interest is the formation of a double versus a single ITCZ. There is a large variation between models of the strength of the ITCZ and where in the SST experiment sequence they transition from a single to double ITCZ. The SST profiles are defined such that as the equatorial SST gradient flattens, the maximum gradient increases and moves poleward. This leads to a weakening of the mid-latitude jet accompanied by a poleward shift of the jet core. Also considered are tropical wave activity and tropical precipitation frequency distributions. The details of each vary greatly between models, both with a given SST and in the response to the change in SST. One additional experiment is included to examine the sensitivity to an off-equatorial SST maximum. The upward branch of the Hadley circulation follows the SST maximum off the equator. The models that form a single precipitation maximum when the maximum SST is on the equator shift the precipitation maximum off equator and keep it centered over the SST maximum. Those that form a double with minimum on the equatorial maximum SST shift the double structure off the equator, keeping the minimum over the maximum SST. In both situations only modest changes appear in the shifted profile of zonal average precipitation. When the upward branch of the Hadley circulation moves into the hemisphere with SST maximum, the zonal average zonal, meridional and vertical winds all indicate that the Hadley cell in the other hemisphere dominates.
Resumo:
Global climate and weather models tend to produce rainfall that is too light and too regular over the tropical ocean. This is likely because of convective parametrizations, but the problem is not well understood. Here, distributions of precipitation rates are analyzed for high-resolution UK Met Office Unified Model simulations of a 10 day case study over a large tropical domain (∼20°S–20°N and 42°E–180°E). Simulations with 12 km grid length and parametrized convection have too many occurrences of light rain and too few of heavier rain when interpolated onto a 1° grid and compared with Tropical Rainfall Measuring Mission (TRMM) data. In fact, this version of the model appears to have a preferred scale of rainfall around 0.4 mm h−1 (10 mm day−1), unlike observations of tropical rainfall. On the other hand, 4 km grid length simulations with explicit convection produce distributions much more similar to TRMM observations. The apparent preferred scale at lighter rain rates seems to be a feature of the convective parametrization rather than the coarse resolution, as demonstrated by results from 12 km simulations with explicit convection and 40 km simulations with parametrized convection. In fact, coarser resolution models with explicit convection tend to have even more heavy rain than observed. Implications for models using convective parametrizations, including interactions of heating and moistening profiles with larger scales, are discussed. One important implication is that the explicit convection 4 km model has temperature and moisture tendencies that favour transitions in the convective regime. Also, the 12 km parametrized convection model produces a more stable temperature profile at its extreme high-precipitation range, which may reduce the chance of very heavy rainfall. Further study is needed to determine whether unrealistic precipitation distributions are due to some fundamental limitation of convective parametrizations or whether parametrizations can be improved, in order to better simulate these distributions.
Resumo:
High spatial resolution environmental data gives us a better understanding of the environmental factors affecting plant distributions at fine spatial scales. However, large environmental datasets dramatically increase compute times and output species model size stimulating the need for an alternative computing solution. Cluster computing offers such a solution, by allowing both multiple plant species Environmental Niche Models (ENMs) and individual tiles of high spatial resolution models to be computed concurrently on the same compute cluster. We apply our methodology to a case study of 4,209 species of Mediterranean flora (around 17% of species believed present in the biome). We demonstrate a 16 times speed-up of ENM computation time when 16 CPUs were used on the compute cluster. Our custom Java ‘Merge’ and ‘Downsize’ programs reduce ENM output files sizes by 94%. The median 0.98 test AUC score of species ENMs is aided by various species occurrence data filtering techniques. Finally, by calculating the percentage change of individual grid cell values, we map the projected percentages of plant species vulnerable to climate change in the Mediterranean region between 1950–2000 and 2020.
Resumo:
The translation of an ensemble of model runs into a probability distribution is a common task in model-based prediction. Common methods for such ensemble interpretations proceed as if verification and ensemble were draws from the same underlying distribution, an assumption not viable for most, if any, real world ensembles. An alternative is to consider an ensemble as merely a source of information rather than the possible scenarios of reality. This approach, which looks for maps between ensembles and probabilistic distributions, is investigated and extended. Common methods are revisited, and an improvement to standard kernel dressing, called ‘affine kernel dressing’ (AKD), is introduced. AKD assumes an affine mapping between ensemble and verification, typically not acting on individual ensemble members but on the entire ensemble as a whole, the parameters of this mapping are determined in parallel with the other dressing parameters, including a weight assigned to the unconditioned (climatological) distribution. These amendments to standard kernel dressing, albeit simple, can improve performance significantly and are shown to be appropriate for both overdispersive and underdispersive ensembles, unlike standard kernel dressing which exacerbates over dispersion. Studies are presented using operational numerical weather predictions for two locations and data from the Lorenz63 system, demonstrating both effectiveness given operational constraints and statistical significance given a large sample.
Resumo:
Peat soils consist of poorly decomposed plant detritus, preserved by low decay rates, and deep peat deposits are globally significant stores in the carbon cycle. High water tables and low soil temperatures are commonly held to be the primary reasons for low peat decay rates. However, recent studies suggest a thermodynamic limit to peat decay, whereby the slow turnover of peat soil pore water may lead to high concentrations of phenols and dissolved inorganic carbon. In sufficient concentrations, these chemicals may slow or even halt microbial respiration, providing a negative feedback to peat decay. We document the analysis of a simple, one-dimensional theoretical model of peatland pore water residence time distributions (RTDs). The model suggests that broader, thicker peatlands may be more resilient to rapid decay caused by climate change because of slow pore water turnover in deep layers. Even shallow peat deposits may also be resilient to rapid decay if rainfall rates are low. However, the model suggests that even thick peatlands may be vulnerable to rapid decay under prolonged high rainfall rates, which may act to flush pore water with fresh rainwater. We also used the model to illustrate a particular limitation of the diplotelmic (i.e., acrotelm and catotelm) model of peatland structure. Model peatlands of contrasting hydraulic structure exhibited identical water tables but contrasting RTDs. These scenarios would be treated identically by diplotelmic models, although the thermodynamic limit suggests contrasting decay regimes. We therefore conclude that the diplotelmic model be discarded in favor of model schemes that consider continuous variation in peat properties and processes.
Resumo:
This paper proposes a method for describing the distribution of observed temperatures on any day of the year such that the distribution and summary statistics of interest derived from the distribution vary smoothly through the year. The method removes the noise inherent in calculating summary statistics directly from the data thus easing comparisons of distributions and summary statistics between different periods. The method is demonstrated using daily effective temperatures (DET) derived from observations of temperature and wind speed at De Bilt, Holland. Distributions and summary statistics are obtained from 1985 to 2009 and compared to the period 1904–1984. A two-stage process first obtains parameters of a theoretical probability distribution, in this case the generalized extreme value (GEV) distribution, which describes the distribution of DET on any day of the year. Second, linear models describe seasonal variation in the parameters. Model predictions provide parameters of the GEV distribution, and therefore summary statistics, that vary smoothly through the year. There is evidence of an increasing mean temperature, a decrease in the variability in temperatures mainly in the winter and more positive skew, more warm days, in the summer. In the winter, the 2% point, the value below which 2% of observations are expected to fall, has risen by 1.2 °C, in the summer the 98% point has risen by 0.8 °C. Medians have risen by 1.1 and 0.9 °C in winter and summer, respectively. The method can be used to describe distributions of future climate projections and other climate variables. Further extensions to the methodology are suggested.
Resumo:
Land-use changes can alter the spatial population structure of plant species, which may in turn affect the attractiveness of flower aggregations to different groups of pollinators at different spatial scales. To assess how pollinators respond to spatial heterogeneity of plant distributions and whether honeybees affect visitation by other pollinators we used an extensive data set comprising ten plant species and their flower visitors from five European countries. In particular we tested the hypothesis that the composition of the flower visitor community in terms of visitation frequencies by different pollinator groups were affected by the spatial plant population structure, viz. area and density measures, at a within-population (‘patch’) and among-population (‘population’) scale. We found that patch area and population density were the spatial variables that best explained the variation in visitation frequencies within the pollinator community. Honeybees had higher visitation frequencies in larger patches, while bumblebees and hoverflies had higher visitation frequencies in sparser populations. Solitary bees had higher visitation frequencies in sparser populations and smaller patches. We also tested the hypothesis that honeybees affect the composition of the pollinator community by altering the visitation frequencies of other groups of pollinators. There was a positive relationship between visitation frequencies of honeybees and bumblebees, while the relationship with hoverflies and solitary bees varied (positive, negative and no relationship) depending on the plant species under study. The overall conclusion is that the spatial structure of plant populations affects different groups of pollinators in contrasting ways at both the local (‘patch’) and the larger (‘population’) scales and, that honeybees affect the flower visitation by other pollinator groups in various ways, depending on the plant species under study. These contrasting responses emphasize the need to investigate the entire pollinator community when the effects of landscape change on plant–pollinator interactions are studied.
Resumo:
By modelling the average activity of large neuronal populations, continuum mean field models (MFMs) have become an increasingly important theoretical tool for understanding the emergent activity of cortical tissue. In order to be computationally tractable, long-range propagation of activity in MFMs is often approximated with partial differential equations (PDEs). However, PDE approximations in current use correspond to underlying axonal velocity distributions incompatible with experimental measurements. In order to rectify this deficiency, we here introduce novel propagation PDEs that give rise to smooth unimodal distributions of axonal conduction velocities. We also argue that velocities estimated from fibre diameters in slice and from latency measurements, respectively, relate quite differently to such distributions, a significant point for any phenomenological description. Our PDEs are then successfully fit to fibre diameter data from human corpus callosum and rat subcortical white matter. This allows for the first time to simulate long-range conduction in the mammalian brain with realistic, convenient PDEs. Furthermore, the obtained results suggest that the propagation of activity in rat and human differs significantly beyond mere scaling. The dynamical consequences of our new formulation are investigated in the context of a well known neural field model. On the basis of Turing instability analyses, we conclude that pattern formation is more easily initiated using our more realistic propagator. By increasing characteristic conduction velocities, a smooth transition can occur from self-sustaining bulk oscillations to travelling waves of various wavelengths, which may influence axonal growth during development. Our analytic results are also corroborated numerically using simulations on a large spatial grid. Thus we provide here a comprehensive analysis of empirically constrained activity propagation in the context of MFMs, which will allow more realistic studies of mammalian brain activity in the future.
Resumo:
We present all relevant details of our calculation of the complete next-to-leading order O(αS2α) QCD corrections to heavy flavor photoproduction with longitudinally polarized point-like photons and hadrons. In particular we provide analytical results for the virtual plus soft gluon cross section. We carefully address the relevance of remaining theoretical uncertainties by varying, for instance, the factorization and renormalization scales independently. Such studies are of importance for a meaningful first direct determination of the polarized gluon density Δg from the total charm production spin asymmetry by the upcoming COMPASS experiment. It is shown that the scale uncertainty is considerably reduced in next-to-leading order, but the dependence on the charm quark mass is sizable at fixed target energies. Finally, we study several differential single-inclusive heavy quark distributions and, for the polarized HERA option, the total bottom spin asymmetry.
Resumo:
A method of classifying the upper tropospheric/lower stratospheric (UTLS) jets has been developed that allows satellite and aircraft trace gas data and meteorological fields to be efficiently mapped in a jet coordinate view. A detailed characterization of multiple tropopauses accompanies the jet characterization. Jet climatologies show the well-known high altitude subtropical and lower altitude polar jets in the upper troposphere, as well as a pattern of concentric polar and subtropical jets in the Southern Hemisphere, and shifts of the primary jet to high latitudes associated with blocking ridges in Northern Hemisphere winter. The jet-coordinate view segregates air masses differently than the commonly-used equivalent latitude (EqL) coordinate throughout the lowermost stratosphere and in the upper troposphere. Mapping O3 data from the Aura Microwave Limb Sounder (MLS) satellite and the Winter Storms aircraft datasets in jet coordinates thus emphasizes different aspects of the circulation compared to an EqL-coordinate framework: the jet coordinate reorders the data geometrically, thus highlighting the strong PV, tropopause height and trace gas gradients across the subtropical jet, whereas EqL is a dynamical coordinate that may blur these spatial relationships but provides information on irreversible transport. The jet coordinate view identifies the concentration of stratospheric ozone well below the tropopause in the region poleward of and below the jet core, as well as other transport features associated with the upper tropospheric jets. Using the jet information in EqL coordinates allows us to study trace gas distributions in regions of weak versus strong jets, and demonstrates weaker transport barriers in regions with less jet influence. MLS and Atmospheric Chemistry Experiment-Fourier Transform Spectrometer trace gas fields for spring 2008 in jet coordinates show very strong, closely correlated, PV, tropopause height and trace gas gradients across the jet, and evidence of intrusions of stratospheric air below the tropopause below and poleward of the subtropical jet; these features are consistent between instruments and among multiple trace gases. Our characterization of the jets is facilitating studies that will improve our understanding of upper tropospheric trace gas evolution.
Resumo:
During a series of 8 measurement campaigns within the SPURT project (2001-2003), vertical profiles of CO and O3 have been obtained at subtropical, middle and high latitudes over western Europe, covering the troposphere and lowermost stratosphere up to ~14 km altitude during all seasons. The seasonal and latitudinal variation of the measured trace gas profiles are compared to simulations with the chemical transport model MATCH. In the troposphere reasonable agreement between observations and model predictions is achieved for CO and O3, in particular at subtropical and mid-latitudes, while the model overestimates (underestimates) CO (O3 in the lowermost stratosphere particularly at high latitudes, indicating too strong simulated bi-directional exchange across the tropopause. By the use of tagged tracers in the model, long-range transport of Asian air masses is identified as the dominant source of CO pollution over Europe in the free troposphere.
Resumo:
Techniques are proposed for evaluating forecast probabilities of events. The tools are especially useful when, as in the case of the Survey of Professional Forecasters (SPF) expected probability distributions of inflation, recourse cannot be made to the method of construction in the evaluation of the forecasts. The tests of efficiency and conditional efficiency are applied to the forecast probabilities of events of interest derived from the SPF distributions, and supplement a whole-density evaluation of the SPF distributions based on the probability integral transform approach.