894 resultados para distributed feedback laser
Resumo:
Aim This paper is a report of a study conducted to validate an instrument for measuring advanced practice nursing role delineation in an international contemporary health service context using the Delphi technique. Background Although most countries now have clear definitions and competency standards for nurse practitioners, no such clarity exists for many advanced practice nurse roles, leaving healthcare providers uncertain whether their service needs can or should be met by an advanced practice nurse or a nurse practitioner. The validation of a tool depicting advanced practice nursing is essential for the appropriate deployment of advanced practice nurses. This paper is the second in a three-phase study to develop an operational framework for assigning advanced practice nursing roles. Method An expert panel was established to review the activities in the Strong Model of Advanced Practice Role Delineation tool. Using the Delphi technique, data were collected via an on-line survey through a series of iterative rounds in 2008. Feedback and statistical summaries of responses were distributed to the panel until the 75% consensus cut-off was obtained. Results After three rounds and modification of five activities, consensus was obtained for validation of the content of this tool. Conclusion The Strong Model of Advanced Practice Role Delineation tool is valid for depicting the dimensions of practice of the advanced practice role in an international contemporary health service context thereby having the potential to optimize the utilization of the advanced practice nursing workforce.
Resumo:
With the increase in the level of global warming, renewable energy based distributed generators (DGs) will increasingly play a dominant role in electricity production. Distributed generation based on solar energy (photovoltaic and solar thermal), wind, biomass, mini-hydro along with use of fuel cells and micro turbines will gain considerable momentum in the near future. A microgrid consists of clusters of load and distributed generators that operate as a single controllable system. The interconnection of the DG to the utility/grid through power electronic converters has raised concern about safe operation and protection of the equipments. Many innovative control techniques have been used for enhancing the stability of microgrid as for proper load sharing. The most common method is the use of droop characteristics for decentralized load sharing. Parallel converters have been controlled to deliver desired real power (and reactive power) to the system. Local signals are used as feedback to control converters, since in a real system, the distance between the converters may make the inter-communication impractical. The real and reactive power sharing can be achieved by controlling two independent quantities, frequency and fundamental voltage magnitude. In this thesis, an angle droop controller is proposed to share power amongst converter interfaced DGs in a microgrid. As the angle of the output voltage can be changed instantaneously in a voltage source converter (VSC), controlling the angle to control the real power is always beneficial for quick attainment of steady state. Thus in converter based DGs, load sharing can be performed by drooping the converter output voltage magnitude and its angle instead of frequency. The angle control results in much lesser frequency variation compared to that with frequency droop. An enhanced frequency droop controller is proposed for better dynamic response and smooth transition between grid connected and islanded modes of operation. A modular controller structure with modified control loop is proposed for better load sharing between the parallel connected converters in a distributed generation system. Moreover, a method for smooth transition between grid connected and islanded modes is proposed. Power quality enhanced operation of a microgrid in presence of unbalanced and non-linear loads is also addressed in which the DGs act as compensators. The compensator can perform load balancing, harmonic compensation and reactive power control while supplying real power to the grid A frequency and voltage isolation technique between microgrid and utility is proposed by using a back-to-back converter. As utility and microgrid are totally isolated, the voltage or frequency fluctuations in the utility side do not affect the microgrid loads and vice versa. Another advantage of this scheme is that a bidirectional regulated power flow can be achieved by the back-to-back converter structure. For accurate load sharing, the droop gains have to be high, which has the potential of making the system unstable. Therefore the choice of droop gains is often a tradeoff between power sharing and stability. To improve this situation, a supplementary droop controller is proposed. A small signal model of the system is developed, based on which the parameters of the supplementary controller are designed. Two methods are proposed for load sharing in an autonomous microgrid in rural network with high R/X ratio lines. The first method proposes power sharing without any communication between the DGs. The feedback quantities and the gain matrixes are transformed with a transformation matrix based on the line R/X ratio. The second method involves minimal communication among the DGs. The converter output voltage angle reference is modified based on the active and reactive power flow in the line connected at point of common coupling (PCC). It is shown that a more economical and proper power sharing solution is possible with the web based communication of the power flow quantities. All the proposed methods are verified through PSCAD simulations. The converters are modeled with IGBT switches and anti parallel diodes with associated snubber circuits. All the rotating machines are modeled in detail including their dynamics.
Resumo:
The Denial of Service Testing Framework (dosTF) being developed as part of the joint India-Australia research project for ‘Protecting Critical Infrastructure from Denial of Service Attacks’ allows for the construction, monitoring and management of emulated Distributed Denial of Service attacks using modest hardware resources. The purpose of the testbed is to study the effectiveness of different DDoS mitigation strategies and to allow for the testing of defense appliances. Experiments are saved and edited in XML as abstract descriptions of an attack/defense strategy that is only mapped to real resources at run-time. It also provides a web-application portal interface that can start, stop and monitor an attack remotely. Rather than monitoring a service under attack indirectly, by observing traffic and general system parameters, monitoring of the target application is performed directly in real time via a customised SNMP agent.
Resumo:
In November 2009 the researcher embarked on a project aimed at reducing the amount of paper used by Queensland University of Technology (QUT) staff in their daily workplace activities. The key goal was to communicate to staff that excessive printing has a tangible and negative effect on their workplace and local environment. The research objective was to better understand what motivates staff towards more ecologically sustainable printing practises, whilst meeting their job’s demands. The current study is built on previous research that found that one interface does not address the needs of all users when creating persuasive Human Computer Interaction (HCI) interventions targeting resource consumption. In response, the current study created and trialled software that communicates individual paper consumption in precise metrics. Based on preliminary research data different metric sets have been defined to address the different motivations and beliefs of user archetypes using descriptive and injunctive normative information.
Resumo:
In rural low-voltage networks, distribution lines are usually highly resistive. When many distributed generators are connected to such lines, power sharing among them is difficult when using conventional droop control, as the real and reactive power have strong coupling with each other. A high droop gain can alleviate this problem but may lead the system to instability. To overcome4 this, two droop control methods are proposed for accurate load sharing with frequency droop controller. The first method considers no communication among the distributed generators and regulates the output voltage and frequency, ensuring acceptable load sharing. The droop equations are modified with a transformation matrix based on the line R/X ration for this purpose. The second proposed method, with minimal low bandwidth communication, modifies the reference frequency of the distributed generators based on the active and reactive power flow in the lines connected to the points of common coupling. The performance of these two proposed controllers is compared with that of a controller, which includes an expensive high bandwidth communication system through time-domain simulation of a test system. The magnitude of errors in power sharing between these three droop control schemes are evaluated and tabulated.
Resumo:
This correspondence paper addresses the problem of output feedback stabilization of control systems in networked environments with quality-of-service (QoS) constraints. The problem is investigated in discrete-time state space using Lyapunov’s stability theory and the linear inequality matrix technique. A new discrete-time modeling approach is developed to describe a networked control system (NCS) with parameter uncertainties and nonideal network QoS. It integrates a network-induced delay, packet dropout, and other network behaviors into a unified framework. With this modeling, an improved stability condition, which is dependent on the lower and upper bounds of the equivalent network-induced delay, is established for the NCS with norm-bounded parameter uncertainties. It is further extended for the output feedback stabilization of the NCS with nonideal QoS. Numerical examples are given to demonstrate the main results of the theoretical development.
Resumo:
Recently published studies not only demonstrated that laser printers are often significant sources of ultrafine particles, but they also shed light on particle formation mechanisms. While the role of fuser roller temperature as a factor affecting particle formation rate has been postulated, its impact has never been quantified. To address this gap in knowledge, this study measured emissions from 30 laser printers in chamber using a standardized printing sequence, as well as monitoring fuser roller temperature. Based on a simplified mass balance equation, the average emission rates of particle number, PM2.5 and O3 were calculated. The results showed that: almost all printers were found to be high particle number emitters (i.e. > 1.01×1010 particles/min); colour printing generated more PM2.5 than monochrome printing; and all printers generated significant amounts of O3. Particle number emissions varied significantly during printing and followed the cycle of fuser roller temperature variation, which points to temperature being the strongest factor controlling emissions. For two sub-groups of printers using the same technology (heating lamps), systematic positive correlations, in the form of a power law, were found between average particle number emission rate and average roller temperature. Other factors, such as fuser material and structure, are also thought to play a role, since no such correlation was found for the remaining two sub-groups of printers using heating lamps, or for the printers using heating strips. In addition, O3 and total PM2.5 were not found to be statistically correlated with fuser temperature.
Resumo:
Nonlinear filter generators are common components used in the keystream generators for stream ciphers and more recently for authentication mechanisms. They consist of a Linear Feedback Shift Register (LFSR) and a nonlinear Boolean function to mask the linearity of the LFSR output. Properties of the output of a nonlinear filter are not well studied. Anderson noted that the m-tuple output of a nonlinear filter with consecutive taps to the filter function is unevenly distributed. Current designs use taps which are not consecutive. We examine m-tuple outputs from nonlinear filter generators constructed using various LFSRs and Boolean functions for both consecutive and uneven (full positive difference sets where possible) tap positions. The investigation reveals that in both cases, the m-tuple output is not uniform. However, consecutive tap positions result in a more biased distribution than uneven tap positions, with some m-tuples not occurring at all. These biased distributions indicate a potential flaw that could be exploited for cryptanalysis
Resumo:
Instrumental music performance is a well-established case of real-time interaction with technology and, when extended to ensembles, of interaction with others. However, these interactions are fleeting and the opportunities to reflect on action is limited, even though audio and video recording has recently provided important opportunities in this regard. In this paper we report on research to further extend these reflective opportunities through the capture and visualization of gestural data collected during collaborative virtual performances; specifically using the digital media instrument Jam2jam AV and the specifically-developed visualization software Jam2jam AV Visualize. We discusses how such visualization may assist performance development and understanding. The discussion engages with issues of representation, authenticity of virtual experiences, intersubjectivity and wordless collaboration, and creativity support. Two usage scenarios are described showing that collaborative intent is evident in the data visualizations more clearly than in audio-visual recordings alone, indicating that the visualization of performance gestures can be an efficient way of identifying deliberate and co-operative performance behaviours.
Resumo:
In this paper we present a novel distributed coding protocol for multi-user cooperative networks. The proposed distributed coding protocol exploits the existing orthogonal space-time block codes to achieve higher diversity gain by repeating the code across time and space (available relay nodes). The achievable diversity gain depends on the number of relay nodes that can fully decode the signal from the source. These relay nodes then form space-time codes to cooperatively relay to the destination using number of time slots. However, the improved diversity gain is archived at the expense of the transmission rate. The design principles of the proposed space-time distributed code and the issues related to transmission rate and diversity trade off is discussed in detail. We show that the proposed distributed space-time coding protocol out performs existing distributed codes with a variable transmission rate.
Resumo:
The culture of mashups which is examined by the contributions collected in this volume is a symptom of a wider paradigm shift in our engagement with information – a term which should be understood here in its broadest sense, ranging from factual material to creative works. It is a shift which has been a long time coming and has had many precedents, from the collage art of the Dadaists in the 1920s to the music mixtapes of the 70s and 80s, and finally to the explosion of mashup‐style practices that was enabled by modern computing technologies.
Resumo:
Background: An estimated 285 million people worldwide have diabetes and its prevalence is predicted to increase to 439 million by 2030. For the year 2010, it is estimated that 3.96 million excess deaths in the age group 20-79 years are attributable to diabetes around the world. Self-management is recognised as an integral part of diabetes care. This paper describes the protocol of a randomised controlled trial of an automated interactive telephone system aiming to improve the uptake and maintenance of essential diabetes self-management behaviours. ---------- Methods/Design: A total of 340 individuals with type 2 diabetes will be randomised, either to the routine care arm, or to the intervention arm in which participants receive the Telephone-Linked Care (TLC) Diabetes program in addition to their routine care. The intervention requires the participants to telephone the TLC Diabetes phone system weekly for 6 months. They receive the study handbook and a glucose meter linked to a data uploading device. The TLC system consists of a computer with software designed to provide monitoring, tailored feedback and education on key aspects of diabetes self-management, based on answers voiced or entered during the current or previous conversations. Data collection is conducted at baseline (Time 1), 6-month follow-up (Time 2), and 12-month follow-up (Time 3). The primary outcomes are glycaemic control (HbA1c) and quality of life (Short Form-36 Health Survey version 2). Secondary outcomes include anthropometric measures, blood pressure, blood lipid profile, psychosocial measures as well as measures of diet, physical activity, blood glucose monitoring, foot care and medication taking. Information on utilisation of healthcare services including hospital admissions, medication use and costs is collected. An economic evaluation is also planned.---------- Discussion: Outcomes will provide evidence concerning the efficacy of a telephone-linked care intervention for self-management of diabetes. Furthermore, the study will provide insight into the potential for more widespread uptake of automated telehealth interventions, globally.
Resumo:
We consider the problem of object tracking in a wireless multimedia sensor network (we mainly focus on the camera component in this work). The vast majority of current object tracking techniques, either centralised or distributed, assume unlimited energy, meaning these techniques don't translate well when applied within the constraints of low-power distributed systems. In this paper we develop and analyse a highly-scalable, distributed strategy to object tracking in wireless camera networks with limited resources. In the proposed system, cameras transmit descriptions of objects to a subset of neighbours, determined using a predictive forwarding strategy. The received descriptions are then matched at the next camera on the objects path using a probability maximisation process with locally generated descriptions. We show, via simulation, that our predictive forwarding and probabilistic matching strategy can significantly reduce the number of object-misses, ID-switches and ID-losses; it can also reduce the number of required transmissions over a simple broadcast scenario by up to 67%. We show that our system performs well under realistic assumptions about matching objects appearance using colour.
Resumo:
Background: There has been a significant increase in the availability of online programs for alcohol problems. A systematic review of the research evidence underpinning these programs is timely. Objectives: Our objective was to review the efficacy of online interventions for alcohol misuse. Systematic searches of Medline, PsycINFO, Web of Science, and Scopus were conducted for English abstracts (excluding dissertations) published from 1998 onward. Search terms were: (1) Internet, Web*; (2) online, computer*; (3) alcohol*; and (4) E\effect*, trial*, random* (where * denotes a wildcard). Forward and backward searches from identified papers were also conducted. Articles were included if (1) the primary intervention was delivered and accessed via the Internet, (2) the intervention focused on moderating or stopping alcohol consumption, and (3) the study was a randomized controlled trial of an alcohol-related screen, assessment, or intervention. Results: The literature search initially yielded 31 randomized controlled trials (RCTs), 17 of which met inclusion criteria. Of these 17 studies, 12 (70.6%) were conducted with university students, and 11 (64.7%) specifically focused on at-risk, heavy, or binge drinkers. Sample sizes ranged from 40 to 3216 (median 261), with 12 (70.6%) studies predominantly involving brief personalized feedback interventions. Using published data, effect sizes could be extracted from 8 of the 17 studies. In relation to alcohol units per week or month and based on 5 RCTs where a measure of alcohol units per week or month could be extracted, differential effect sizes to post treatment ranged from 0.02 to 0.81 (mean 0.42, median 0.54). Pre-post effect sizes for brief personalized feedback interventions ranged from 0.02 to 0.81, and in 2 multi-session modularized interventions, a pre-post effect size of 0.56 was obtained in both. Pre-post differential effect sizes for peak blood alcohol concentrations (BAC) ranged from 0.22 to 0.88, with a mean effect size of 0.66. Conclusions: The available evidence suggests that users can benefit from online alcohol interventions and that this approach could be particularly useful for groups less likely to access traditional alcohol-related services, such as women, young people, and at-risk users. However, caution should be exercised given the limited number of studies allowing extraction of effect sizes, the heterogeneity of outcome measures and follow-up periods, and the large proportion of student-based studies. More extensive RCTs in community samples are required to better understand the efficacy of specific online alcohol approaches, program dosage, the additive effect of telephone or face-to-face interventions, and effective strategies for their dissemination and marketing.
Resumo:
The INEX 2010 Focused Relevance Feedback track offered a refined approach to the evaluation of Focused Relevance Feedback algorithms through simulated exhaustive user feedback. As in traditional approaches we simulated a user-in-the loop by re-using the assessments of ad-hoc retrieval obtained from real users who assess focused ad-hoc retrieval submissions. The evaluation was extended in several ways: the use of exhaustive relevance feedback over entire runs; the evaluation of focused retrieval where both the retrieval results and the feedback are focused; the evaluation was performed over a closed set of documents and complete focused assessments; the evaluation was performed over executable implementations of relevance feedback algorithms; and �finally, the entire evaluation platform is reusable. We present the evaluation methodology, its implementation, and experimental results obtained for nine submissions from three participating organisations.