983 resultados para design engineering


Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND OR CONTEXT: With the re-imagining of engineering education at Deakin University an opportunity was presented with the ability to design purpose built spaces. With this development a review of leading practice educational spaces was undertaken specifically in a product development unit as well as a materials unit. Whilst both areas have different needs there were some common elements with the location of teaching aids, apparatus and experimental set-up and collaborative teaching spaces.
PURPOSE OR GOAL: This study examined what would a best practice learning environment look like in two different disciplines and what is the connection and similarities in a problem based learning environment. A benchmarking study and literature review on best practice was undertaken; this learning space was intrinsically linked to the educational model. Aspects of the educational model have started to be implemented in this long term project
APPROACH: Student perceptions were measured primarily through standard unit feedback for both units as well as student comments on the units. Engagement of students was the primary focus of the redesign of purpose built spaces as well as curriculum review. By placing students into specifically designed spaces to enhance learning outcomes it is anticipated that the knowledge and skills attainment will be higher for all students.
DISCUSSION: The redevelopment of learning spaces has forced staff to think hard about their units and how space impacts on student educations. With both the materials and product development units, student had the ability to move through spaces depending on what they were doing. This ability to move is a combination of the educational model, the facilities and staff/student interaction.
RECOMMENDATIONS/IMPLICATIONS/CONCLUSION: While part of a long term redevelopment of facilities and curriculum, it has been found that when the facilities match the educational model student engagement is higher. This has been support in both the literature and observation through student and staff evaluations of the unit. It is expected that as students adapt to the new educational model further they will make greater use of the purpose built facilities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is often argued that ‘design’ is an (perhaps the) essential characteristic of engineering practice; that, “Design requires unique knowledge, skills, and attitudes common to all engineering disciplines, and it is these attributes that distinguish engineering as a profession.” Hence, it is not surprising to see engineering design identified as a key element of engineering education. There are a range of pedagogical models described, badged with a range of names, that are suggested as approaches to teaching engineering design, for example: project-based learning, problem-based learning, design-based learning, conceive-design-implement-operate (CDIO), problem-oriented project-based learning, social design based learning and project-oriented, design-based learning. While significant literature on engineering design education generally exists, many authors note open questions regarding optimal pedagogical approaches, and opportunities for further evaluation and research. In this paper we draw on literature about design education and DBL in engineering education, and synthesise themes that present a potential research agenda for those educators involved in DBL in engineering education.A search of the research literature was conducted using terms related to DBL in engineering education, including ‘Engineering Design’, ‘Design Education’, ‘Engineering + Project Based Learning’, ‘Engineering + Problem Based Learning’ and ‘Engineering + Design Based Learning’. The literature thus collected was expanded by inspecting the lists of references in the initially identified literature set for further potentially relevant literature. This process was repeated until no further related literature was identified, and resulted in 124 items. All collected literature was carefully reviewed for explicitly identified suggestions for future research. The authors also considered the literature set as a whole to identify additional research possibilities implied by aspects of DBL practice commonly addressed weakly, or not at all, in the available published research. From the results of this review, a set of themes was synthesised by grouping related research recommendations and possibilities. In the following section the identified research themes are presented and, for each, a summary of the supporting literature is given and a central research question is formulated by the authors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cassava contributes significantly to biobased material development. Conventional approaches for its bio-derivative-production and application cause significant wastes, tailored material development challenges, with negative environmental impact and application limitations. Transforming cassava into sustainable value-added resources requires redesigning new approaches. Harnessing unexplored material source, and downstream process innovations can mitigate challenges. The ultimate goal proposed an integrated sustainable process system for cassava biomaterial development and potential application. An improved simultaneous release recovery cyanogenesis (SRRC) methodology, incorporating intact bitter cassava, was developed and standardized. Films were formulated, characterised, their mass transport behaviour, simulating real-distribution-chain conditions quantified, and optimised for desirable properties. Integrated process design system, for sustainable waste-elimination and biomaterial development, was developed. Films and bioderivatives for desired MAP, fast-delivery nutraceutical excipients and antifungal active coating applications were demonstrated. SRRC-processed intact bitter cassava produced significantly higher yield safe bio-derivatives than peeled, guaranteeing 16% waste-elimination. Process standardization transformed entire root into higher yield and clarified colour bio-derivatives and efficient material balance at optimal global desirability. Solvent mass through temperature-humidity-stressed films induced structural changes, and influenced water vapour and oxygen permeability. Sevenunit integrated-process design led to cost-effectiveness, energy-efficient and green cassava processing and biomaterials with zero-environment footprints. Desirable optimised bio-derivatives and films demonstrated application in desirable in-package O2/CO2, mouldgrowth inhibition, faster tablet excipient nutraceutical dissolutions and releases, and thymolencapsulated smooth antifungal coatings. Novel material resources, non-root peeling, zero-waste-elimination, and desirable standardised methodology present promising process integration tools for sustainable cassava biobased system development. Emerging design outcomes have potential applications to mitigate cyanide challenges and provide bio-derivative development pathways. Process system leads to zero-waste, with potential to reshape current style one-way processes into circular designs modelled on nature's effective approaches. Indigenous cassava components as natural material reinforcements, and SRRC processing approach has initiated a process with potential wider deployment in broad product research development. This research contributes to scientific knowledge in material science and engineering process design.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is argued that ‘design' is an essential characteristic of engineering practice, and hence, an essential theme of engineering education. It is suggested that first-year design courses enhance commencing student motivation and retention, and introduce engineering application content and basic design experience early in the curriculum. The research literature indicates that engineering design practice is a deeply social process, with collaboration and group interactions required at almost every stage. This chapter documents the evaluation of the initial and subsequent second offerings of a first-year engineering design unit at Griffith University in Australia. The unit 1006ENG Design and Professional Skills aims to provide an introduction to engineering design and professional practice through a project-based approach to problem solving. The unit learning design incorporates student group work, and uses self-and-peer-assessment to incorporate aspects of the design process into the unit assessment and to provide a mechanism for individualization of student marks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interdisciplinary relationship between industrial design and mechanical engineering is sensitive. This research focuses on understanding how one can positively mediate this relation, in order to foster innovation. In this paper, technology is considered for this role since it has, in some historical moments, served as an integrator of these two disciplines, in processes that led to innovation. By means of an extensive literature review, covering three different periods of technological development, both disciplines’ positioning in society and their link with technology are analyzed and compared. The three case studies selected help to illustrate, precisely, the technology positioning between both disciplines and society. Literature assumes that industrial design is rooted in the rise of criticism against both the machine and the mechanized production. This is an opposing approach to the current paradigm, in which design plays a fundamental role in adapting technology to society. Also, the social problems caused by the mechanized and massive production triggered the mechanical engineering emergence, as a professionalized discipline. Technology was intrinsically connected with both industrial design and mechanical engineering emergence and subsequent evolution. In the technology conflict with society lays the reform and regulation for design practice, in its broadest sense.