998 resultados para delta 13C, skeletal carbonate
Resumo:
During CO2 storage operations in mature oilfields or saline aquifers it is desirable to trace the movement of injected CO2 for verification and safety purposes. We demonstrate the successful use of carbon isotope abundance ratios for tracing the movement of CO2 injected at the Cardium CO2 Storage Monitoring project in Alberta between 2005 and 2007. Injected CO2 had a d13C value of -4.6±1.1 per mil that was more than 10 per mil higher than the carbon isotope ratios of casing gas CO2 prior to CO2 injection with average d13C values ranging from -15.9 to -23.5 per mil. After commencement of CO2 injection, d13C values of casing gas CO2 increased in all observation wells towards those of the injected CO2 consistent with a two-source end-member mixing model. At four wells located in a NE-SW trend with respect to the injection wells, breakthrough of injected CO2 was registered chemically (>50 mol % CO2) and isotopically 1-6 months after commencement of CO2 injection resulting in cumulative CO2 fluxes exceeding 100000 m**3 during the observation period. At four other wells, casing gas CO2 contents remained below 5 mol % resulting in low cumulative CO2 fluxes (<2000 m**3) throughout the entire observation period, but carbon isotope ratios indicated contributions between <30 and 80% of injected CO2. Therefore, we conclude that monitoring the movement of CO2 in the injection reservoir with geochemical and isotopic techniques is an effective approach to determine plume expansion and to identify potential preferential flow paths provided that the isotopic composition of injected CO2 is constant and distinct from that of baseline CO2.
Resumo:
The early Aptian Oceanic Anoxic Event (OAE1a, 120 Ma) represents a geologically brief time interval in the mid-Cretaceous greenhouse world that is characterized by increased organic carbon accumulation in marine sediments, sudden biotic changes, and abrupt carbon-isotope excursions indicative of significant perturbations to global carbon cycling. The brevity of these drastic environmental changes (< 10**6 year) and the typically 10**6 year temporal resolution of the available chronologies, however, represent a critical gap in our knowledge of OAE1a. We have conducted a high-resolution investigation of three widely distributed sections, including the Cismon APTICORE in Italy, Santa Rosa Canyon in northeastern Mexico, and Deep Sea Drilling Project (DSDP) Site 398 off the Iberian margin in the North Atlantic Ocean, which represent a range of depositional environments where condensed and moderately expanded OAE1a intervals are recorded. The objectives of this study are to establish orbital chronologies for these sections and to construct a common, high-resolution timescale for OAE1a. Spectral analyses of the closely-spaced (corresponding to ~5 to 10 kyr) measurements of calcium carbonate content of the APTICORE, magnetic susceptibility (MS) and anhysteretic remanent magnetization (ARM) of the Santa Rosa samples, and MS, ARM and ARM/IRM, where IRM is isothermal remanent magnetization, of Site 398 samples reveal statistically significant cycles. These cycles exhibit periodicity ratios and modulation patterns similar to those of the mid-Cretaceous orbital cycles, suggesting that orbital variations may have modulated depositional processes. Orbital control allows us to estimate the duration of unique, globally identifiable stages of OAE1a. Although OAE1a had a duration of ~1.0 to 1.3 Myr, the initial perturbation represented by the negative carbon-isotope excursion was rapid, lasting for ~27-44 kyr. This estimate could serve as a basis for constraining triggering mechanisms for OAE1a.
Resumo:
Calcite in the cavities and veins of igneous rocks has long been recognized as an alteration by-product (Dana, 1892). Elementary mineralogy textbooks report that the most common occurrence of aragonite is in the cavities of basalts and andesites (e.g., Kerr, 1977). Therefore, it is not surprising to find both carbonate minerals in association with the moderately to extensively altered basalt flows recovered during deep sea drilling on Suiko Seamount in the Emperor Seamount chain (DSDP Leg 55, Hole 433C). The thickness and vesicularity of the flows, along with the presence of oxidized flow tops, indicate that the basalt erupted subaerially (Site 433 Report, 1980). The stable isotopic contents of the carbonate phases filling and lining the veins and vesicles denote the environment of alteration. An isotopic study was undertaken to secure supportive evidence for a subaerial period in the development of the seamount. Also, the subsequent alteration history after submergence may be interpreted from this isotopic record.
Resumo:
A refined sample processing technique using glacial acetic acid has been applied to Upper Cenomanian and Lower Turonian limestones from Baddeckenstedt (Lower Saxony) enabeling the first quantitative analysis of planktonic foraminiferal populations through the Stage boundary succession in northwestern Germany. Measurements of carbonate contents, organic carbon and stable carbon and oxygen isotopes were also reported. These data allow a correlation to be made of the Baddeckenstedt section with those at Misburg (basinal facies, northwestern Germany) and Dover (Plenus Marls, southern England). Significant maxima of the organic carbon content at Baddeckenstedt correspond to prominent black shale couplets at Misburg. The planktonic foraminiferal generic groups show at Baddeckenstedt similar fluctuations as reported from Dover. Their correlation reveals details of a complex paleoceanographic regime in the NW-German Basin during the Cenomanian/Turonian Oceanic Anoxic Event.
Resumo:
The Middle Eocene Climatic Optimum (MECO) is a major transient warming event that occurred at ~ 40 Ma and reversed a long-term cooling trend through the early and middle Eocene. We report the results of a high-resolution, quantitative study of siliceous microfossils at Ocean Drilling Program Sites 748 and 749 (Southern Kerguelen Plateau, Southern Ocean, ~ 58°S) across a ~ 1.4 myr interval spanning the MECO event. At both sites, a significant increase in biosiliceous sedimentation is associated with the MECO event. Rich siliceous planktonic microfossil assemblages in this interval are unusual in that they are dominated by ebridians, with radiolarians as a secondary major component. Silicoflagellates and diatoms comprise only a minor fraction of the assemblage, in contrast to siliceous microfossil assemblages that characterize modern Southern Ocean sediments. Based on our new siliceous microfossil records, we interpret two ~ 300 kyr periods of elevated nutrient availability in Southern Ocean surface waters which span the peak warming interval of the MECO and the post-MECO cooling interval. A diverse assemblage of large silicoflagellates belonging to the Dictyocha grandis plexus is linked to the rapid rise in sea-surface temperatures immediately prior to peak warmth, and a pronounced turnover is observed in both ebridian and silicoflagellate assemblages at the onset of peak warming. The interval of peak warmth is also characterized by high abundance of cosmopolitan ebridians (e.g., Ammodochium spp.) and silicoflagellates (e.g., Naviculopsis spp.), and increased abundance of tropical and subtropical diatom genera (e.g., Asterolampra and Azpeitia). These observations confirm the relative pattern of temperature change interpreted from geochemical proxy data at multiple Southern Ocean sites. Furthermore, rapid assemblage changes in both autotrophic and heterotrophic siliceous microfossil groups indicate a reorganization of Southern Ocean plankton communities in response to greenhouse warming during the MECO event.
Resumo:
Except for a few discontinuous fragments of the Late Cretaceous/Early Cenozoic climate history and depositional environment, the paleoenvironmental evolution of the pre-Neogene central Arctic Ocean was virtually unknown prior to the IODP Expedition 302 (Arctic Ocean Coring Expedition - ACEX) drilling campaign on Lomonosov Ridge in 2004. Here we present detailed organic carbon (OC) records from the entire ca. 200 m thick Paleogene OC-rich section of the ACEX drill sites. These records indicate euxinic "Black Sea-type" conditions favorable for the preservation of labile aquatic (marine algae-type) OC occur throughout the upper part of the early Eocene and the middle Eocene, explained by salinity stratification due to freshwater discharge. The superimposed short-term ("Milankovitch-type") variability in amount and composition of OC is related to changes in primary production and terrigenous input. Prominent early Eocene events of algae-type OC preservation coincide with global d13C events such as the PETM and Elmo events. The Elmo d13C Event has been identified in the Arctic Ocean for the first time.
Resumo:
Oceanic authigenic carbonates are classified according to origin of the carbonate carbon source using a complex methodology that includes methods of sedimentary petrography, mineralogy, isotope geochemistry, and microbiology. Mg-calcite (protodolomite) and aragonite predominate among the authigenic carbonates. All authigenic carbonates are depleted in 13C and enriched in 18O (in PDB system) that indicates biological fractionation of isotopes during carbonate formation. Obtained results show that authigenic carbonate formation is a biogeochemical (microbial) process, which involves carbon from ancient sedimentary rocks, abiogenic methane, and bicarbonate-ion of hydrothermal fluids into the modern carbon cycle.
Resumo:
Deep sea drilling on four seamounts in the Emperor Seamount chain revealed that Paleogene shallow-water carbonate sediments of the "bryozoan-algal" facies crown the basalt edifices. According to the biofacies model of Schlanger and Konishi (1966, 1975), this bryozoan- algal assemblage suggests that the seamounts formed in cooler, more northerly waters than those presently occupied by the island of Hawaii; i.e., the paleolatitudes of formation were greater than 20 °N. Moving southward toward the youngest member of the seamount chain, a facies gradient indicative of warmer waters was observed. This gradient is interpreted as a reflection of a northward shift in isotherms during the time span in which the seamounts were progressively formed (Savin et al., 1975). On all seamounts, sedimentation at the drilling sites occurred in a high-energy environment with water depths of approximately 20 meters. Early-stage carbonate diagenesis began in the phreatic zone in the presence of meteoric water, but proceeded after subsidence of the seamounts into intermediate sea waters, where the bulk, stable isotopic composition was determined. The subsidence into intermediate waters was rapid, and permitted establishment of an isotopic equilibrium which, like the facies gradient, reflects the northward shift in isotherms during the Paleogene. Calcite and zeolite cements comprise the later-stage diagenesis, and originated from solutions arising from the hydrolysis of the underlying basalt. In conclusion, the results of this study of the shallow-water carbonate sediments are not inconsistent with a paleolatitude of formation for Suiko Seamount (Site 433) of 26.9 ±3.5 °N, as determined by paleomagnetic measurements (Kono, 1980).
Resumo:
We determined the C and N concentrations and isotopic compositions of sediments in the prism sampled during Ocean Drilling Program Legs 170 and 205 offshore Costa Rica, with the goals of evaluating sediment sources and extents of diagenesis and identifying any effects of infiltrating fluids on the sedimentary C and N. The sediments from Leg 170 Site 1040 contain 0.85-1.96 wt% total organic carbon (TOC) with Vienna Peedee belemnite (VPDB) d13CVPDB from -26.3 per mil to -22.5 per mil, and 832-2221 ppm total nitrogen (TN) with d15Nair from +3.5 per mil to +6.6 per mil. Sediment TN concentrations and d15N values show dramatic downhole increases within the uppermost 130 m of the section and more gradual downhole decreases from 130 meters below seafloor (mbsf) to the base of the décollement at ~370 mbsf. Concentrations and isotopic compositions of TOC are relatively uniform within the entire section, showing some minor perturbation within the décollement zone. In the uppermost 100 m, upsection increases in TN concentrations at constant TOC concentrations produce significant increases in atomic TOC/TN ratios from ~8 to ~18. Carbonate (calcite) contents in the wedge sediments are generally low (<4 wt%), but the d13C and Vienna standard mean ocean water (VSMOW) d18OVSMOW values vary significantly from -26.1 per mil to +4.1 per mil and from +30.0 per mil to +35.3 per mil, respectively. Concentrations and isotopic compositions of TOC and TN for sediments from Leg 205 Sites 1254 and 1255 overlap well with C-N data for sediments from the same depth intervals obtained during Leg 170 at Site 1040.
Resumo:
A total of 32 holes at five sites near 1°N, 86°W drilled on Deep Sea Drilling Project (DSDP) Leg 70 (November- December 1979) provide unique data on the origin of the hydrothermal mounds on the southern flank of the Galapagos Spreading Center. Hydrothermal sediments, primarily Mn-oxide and nontronite, are restricted to the immediate vicinity of the mounds (< 100 m) and are probably formed by the interaction of upward-percolating hydrothermal solutions with seawater and pelagic sediments above locally permeable zones of ocean crust. Mounds as high as 25 meters form in less than a few hundred thousand years, and geothermal and geochemical gradients indicate that they are actively forming today. The lack of alteration of upper basement rocks directly below the mounds and throughout the Galapagos region indicates that the source of the hydrothermal solutions is deeper in the crust.
Resumo:
Authigenic phosphatic laminites enclosed in phosphorite crusts from the shelf off Peru (10°01' S and 10°24' S) consist of carbonate fluorapatite layers, which contain abundant sulfide minerals including pyrite (FeS2) and sphalerite (ZnS). Low d34Spyrite values (average -28.8 per mill) agree with bacterial sulfate reduction and subsequent pyrite formation. Stable sulfur isotopic compositions of sulfate bound in carbonate fluorapatite are lower than that of sulfate from ambient sea water, suggesting bacterial reoxidation of sulfide by sulfide-oxidizing bacteria. The release of phosphorus and subsequent formation of the autochthonous phosphatic laminites are apparently caused by the activity of sulfate-reducing bacteria and associated sulfide-oxidizing bacteria. Following an extraction-phosphorite dissolution-extraction procedure, molecular fossils of sulfate-reducing bacteria (mono-O-alkyl glycerol ethers, di-O-alkyl glycerol ethers, as well as the short-chain branched fatty acids i/ai-C15:0, i/ai-C17:0 and 10MeC16:0) are found to be among the most abundant compounds. The fact that these molecular fossils of sulfate-reducing bacteria are distinctly more abundant after dissolution of the phosphatic laminite reveals that the lipids are tightly bound to the mineral lattice of carbonate fluorapatite. Moreover, compared with the autochthonous laminite, molecular fossils of sulfate-reducing bacteria are: (1) significantly less abundant and (2) not as tightly bound to the mineral lattice in the other, allochthonous facies of the Peruvian crusts consisting of phosphatic coated grains. These observations confirm the importance of sulfate-reducing bacteria in the formation of the phosphatic laminite. Model calculations highlight that organic matter degradation by sulfate-reducing bacteria has the potential to liberate sufficient phosphorus for phosphogenesis.
Resumo:
Two active chemoherm build-ups growing freely up into the oceanic water column, the Pinnacle and the South East-Knoll Chemoherms, have been discovered at Hydrate Ridge on the Cascadia continental margin. These microbially-mediated carbonate formations rise above the seafloor by several tens of meters and display a pinnacle-shaped morphology with steep flanks. The recovered rocks are pure carbonates dominated by aragonite. Based on fabric and mineralogic composition different varieties of authigenic aragonite can be distinguished. Detailed visual and petrographic investigations unambiguously reveal the involvement of microbes during the formation of the carbonates. The fabric of the cryptocrystalline and fibrous aragonite can be described as thrombolitic. Fossilized microbial filaments in the microcrystalline aragonite indicate the intimate relationship between microbes and carbonates. The strongly 13C-depleted carbon isotope values of the samples (as low as -48.1 per mill PDB) are characteristic of methane as the major carbon source for the carbonate formation. The methane-rich fluids from which the carbonates are precipitated originate most probably from a gas reservoir below the bottom-simulating reflector (BSR) and rise through fault systems. The d18O values of the aragonitic chemoherm carbonates are substantially higher (as high as 5.0 per mill PDB) than the expected equilibrium value for an aragonite forming from ambient seawater (3.5 per mill PDB). As a first approximation this indicates formation from glacial ocean water but other factors are considered as well. A conceptual model is presented for the precipitation of these chemoherm carbonates based on in situ observations and the detailed petrographic investigation of the carbonates. This model explains the function of the consortium of archaea and sulfate-reducing bacteria that grows on the carbonates performing anaerobic oxidation of methane (AOM) and enabling the precipitation of the chemoherms above the seafloor surrounded by oxic seawater. Beggiatoa mats growing on the surface of the chemoherms oxidize the sulfide provided by sulfate-dependent anaerobic oxidation of methane within an oxic environment. The contact between Beggiatoa and the underlying microbial consortium represents the interface between the overlying oxic water column and an anoxic micro-environment where carbonate formation takes place.