874 resultados para decision support systems, GIS, interpolation, multiple regression


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To be competitive in contemporary turbulent environments, firms must be capable of processing huge amounts of information, and effectively convert it into actionable knowledge. This is particularly the case in the marketing context, where problems are also usually highly complex, unstructured and ill-defined. In recent years, the development of marketing management support systems has paralleled this evolution in informational problems faced by managers, leading to a growth in the study (and use) of artificial intelligence and soft computing methodologies. Here, we present and implement a novel intelligent system that incorporates fuzzy logic and genetic algorithms to operate in an unsupervised manner. This approach allows the discovery of interesting association rules, which can be linguistically interpreted, in large scale databases (KDD or Knowledge Discovery in Databases.) We then demonstrate its application to a distribution channel problem. It is shown how the proposed system is able to return a number of novel and potentially-interesting associations among variables. Thus, it is argued that our method has significant potential to improve the analysis of marketing and business databases in practice, especially in non-programmed decisional scenarios, as well as to assist scholarly researchers in their exploratory analysis. © 2013 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data fluctuation in multiple measurements of Laser Induced Breakdown Spectroscopy (LIBS) greatly affects the accuracy of quantitative analysis. A new LIBS quantitative analysis method based on the Robust Least Squares Support Vector Machine (RLS-SVM) regression model is proposed. The usual way to enhance the analysis accuracy is to improve the quality and consistency of the emission signal, such as by averaging the spectral signals or spectrum standardization over a number of laser shots. The proposed method focuses more on how to enhance the robustness of the quantitative analysis regression model. The proposed RLS-SVM regression model originates from the Weighted Least Squares Support Vector Machine (WLS-SVM) but has an improved segmented weighting function and residual error calculation according to the statistical distribution of measured spectral data. Through the improved segmented weighting function, the information on the spectral data in the normal distribution will be retained in the regression model while the information on the outliers will be restrained or removed. Copper elemental concentration analysis experiments of 16 certified standard brass samples were carried out. The average value of relative standard deviation obtained from the RLS-SVM model was 3.06% and the root mean square error was 1.537%. The experimental results showed that the proposed method achieved better prediction accuracy and better modeling robustness compared with the quantitative analysis methods based on Partial Least Squares (PLS) regression, standard Support Vector Machine (SVM) and WLS-SVM. It was also demonstrated that the improved weighting function had better comprehensive performance in model robustness and convergence speed, compared with the four known weighting functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation examines the consequences of Electronic Data Interchange (EDI) use on interorganizational relations (IR) in the retail industry. EDI is a type of interorganizational information system that facilitates the exchange of business documents in structured, machine processable form. The research model links EDI use and three IR dimensions--structural, behavioral, and outcome. Based on relevant literature from organizational theory and marketing channels, fourteen hypotheses were proposed for the relationships among EDI use and the three IR dimensions.^ Data were collected through self-administered questionnaires from key informants in 97 retail companies (19% response rate). The hypotheses were tested using multiple regression analysis. The analysis supports the following hypothesis: (a) EDI use is positively related to information intensity and formalization, (b) formalization is positively related to cooperation, (c) information intensity is positively related to cooperation, (d) conflict is negatively related to performance and satisfaction, (e) cooperation is positively related to performance, and (f) performance is positively related to satisfaction. The results support the general premise of the model that the relationship between EDI use and satisfaction among channel members has to be viewed within an interorganizational context.^ Research on EDI is still in a nascent stage. By identifying and testing relevant interorganizational variables, this study offers insights for practitioners managing boundary-spanning activities in organizations using or planning to use EDI. Further, the thesis provides avenues for future research aimed at understanding the consequences of this interorganizational information technology. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amount and quality of available biomass is a key factor for the sustainable livestock industry and agricultural management related decision making. Globally 31.5% of land cover is grassland while 80% of Ireland’s agricultural land is grassland. In Ireland, grasslands are intensively managed and provide the cheapest feed source for animals. This dissertation presents a detailed state of the art review of satellite remote sensing of grasslands, and the potential application of optical (Moderate–resolution Imaging Spectroradiometer (MODIS)) and radar (TerraSAR-X) time series imagery to estimate the grassland biomass at two study sites (Moorepark and Grange) in the Republic of Ireland using both statistical and state of the art machine learning algorithms. High quality weather data available from the on-site weather station was also used to calculate the Growing Degree Days (GDD) for Grange to determine the impact of ancillary data on biomass estimation. In situ and satellite data covering 12 years for the Moorepark and 6 years for the Grange study sites were used to predict grassland biomass using multiple linear regression, Neuro Fuzzy Inference Systems (ANFIS) models. The results demonstrate that a dense (8-day composite) MODIS image time series, along with high quality in situ data, can be used to retrieve grassland biomass with high performance (R2 = 0:86; p < 0:05, RMSE = 11.07 for Moorepark). The model for Grange was modified to evaluate the synergistic use of vegetation indices derived from remote sensing time series and accumulated GDD information. As GDD is strongly linked to the plant development, or phonological stage, an improvement in biomass estimation would be expected. It was observed that using the ANFIS model the biomass estimation accuracy increased from R2 = 0:76 (p < 0:05) to R2 = 0:81 (p < 0:05) and the root mean square error was reduced by 2.72%. The work on the application of optical remote sensing was further developed using a TerraSAR-X Staring Spotlight mode time series over the Moorepark study site to explore the extent to which very high resolution Synthetic Aperture Radar (SAR) data of interferometrically coherent paddocks can be exploited to retrieve grassland biophysical parameters. After filtering out the non-coherent plots it is demonstrated that interferometric coherence can be used to retrieve grassland biophysical parameters (i. e., height, biomass), and that it is possible to detect changes due to the grass growth, and grazing and mowing events, when the temporal baseline is short (11 days). However, it not possible to automatically uniquely identify the cause of these changes based only on the SAR backscatter and coherence, due to the ambiguity caused by tall grass laid down due to the wind. Overall, the work presented in this dissertation has demonstrated the potential of dense remote sensing and weather data time series to predict grassland biomass using machine-learning algorithms, where high quality ground data were used for training. At present a major limitation for national scale biomass retrieval is the lack of spatial and temporal ground samples, which can be partially resolved by minor modifications in the existing PastureBaseIreland database by adding the location and extent ofeach grassland paddock in the database. As far as remote sensing data requirements are concerned, MODIS is useful for large scale evaluation but due to its coarse resolution it is not possible to detect the variations within the fields and between the fields at the farm scale. However, this issue will be resolved in terms of spatial resolution by the Sentinel-2 mission, and when both satellites (Sentinel-2A and Sentinel-2B) are operational the revisit time will reduce to 5 days, which together with Landsat-8, should enable sufficient cloud-free data for operational biomass estimation at a national scale. The Synthetic Aperture Radar Interferometry (InSAR) approach is feasible if there are enough coherent interferometric pairs available, however this is difficult to achieve due to the temporal decorrelation of the signal. For repeat-pass InSAR over a vegetated area even an 11 days temporal baseline is too large. In order to achieve better coherence a very high resolution is required at the cost of spatial coverage, which limits its scope for use in an operational context at a national scale. Future InSAR missions with pair acquisition in Tandem mode will minimize the temporal decorrelation over vegetation areas for more focused studies. The proposed approach complements the current paradigm of Big Data in Earth Observation, and illustrates the feasibility of integrating data from multiple sources. In future, this framework can be used to build an operational decision support system for retrieval of grassland biophysical parameters based on data from long term planned optical missions (e. g., Landsat, Sentinel) that will ensure the continuity of data acquisition. Similarly, Spanish X-band PAZ and TerraSAR-X2 missions will ensure the continuity of TerraSAR-X and COSMO-SkyMed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding complex social-ecological systems, and anticipating how they may respond to rapid change, requires an approach that incorporates environmental, social, economic, and policy factors, usually in a context of fragmented data availability. We employed fuzzy cognitive mapping (FCM) to integrate these factors in the assessment of future wildfire risk in the Chiquitania region, Bolivia. In this region, dealing with wildfires is becoming increasingly challenging because of reinforcing feedbacks between multiple drivers. We conducted semistructured interviews and constructed different FCMs in focus groups to understand the regional dynamics of wildfire from diverse perspectives. We used FCM modelling to evaluate possible adaptation scenarios in the context of future drier climatic conditions. Scenarios also considered possible failure to respond in time to the emergent risk. This approach proved of great potential to support decision making for risk management. It helped identify key forcing variables and generate insights into potential risks and trade-offs of different strategies. The “Hands-off” scenario resulted in amplified impacts driven by intensifying trends, affecting particularly the agricultural production under drought conditions. The “Fire management” scenario, which adopted a bottom-up approach to improve controlled burning, showed less trade-offs between wildfire risk reduction and production compared with the “Fire suppression” scenario. Findings highlighted the importance of considering strategies that involve all actors who use fire, and the need to nest these strategies for a more systemic approach to manage wildfire risk. The FCM model could be used as a decision-support tool and serve as a “boundary object” to facilitate collaboration and integration of different perceptions of fire in the region. This approach also has the potential to inform decisions in other dynamic frontier landscapes around the world that are facing increased risk of large wildfires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traffic demand increases are pushing aging ground transportation infrastructures to their theoretical capacity. The result of this demand is traffic bottlenecks that are a major cause of delay on urban freeways. In addition, the queues associated with those bottlenecks increase the probability of a crash while adversely affecting environmental measures such as emissions and fuel consumption. With limited resources available for network expansion, traffic professionals have developed active traffic management systems (ATMS) in an attempt to mitigate the negative consequences of traffic bottlenecks. Among these ATMS strategies, variable speed limits (VSL) and ramp metering (RM) have been gaining international interests for their potential to improve safety, mobility, and environmental measures at freeway bottlenecks. Though previous studies have shown the tremendous potential of variable speed limit (VSL) and VSL paired with ramp metering (VSLRM) control, little guidance has been developed to assist decision makers in the planning phase of a congestion mitigation project that is considering VSL or VSLRM control. To address this need, this study has developed a comprehensive decision/deployment support tool for the application of VSL and VSLRM control in recurrently congested environments. The decision tool will assist practitioners in deciding the most appropriate control strategy at a candidate site, which candidate sites have the most potential to benefit from the suggested control strategy, and how to most effectively design the field deployment of the suggested control strategy at each implementation site. To do so, the tool is comprised of three key modules, (1) Decision Module, (2) Benefits Module, and (3) Deployment Guidelines Module. Each module uses commonly known traffic flow and geometric parameters as inputs to statistical models and empirically based procedures to provide guidance on the application of VSL and VSLRM at each candidate site. These models and procedures were developed from the outputs of simulated experiments, calibrated with field data. To demonstrate the application of the tool, a list of real-world candidate sites were selected from the Maryland State Highway Administration Mobility Report. Here, field data from each candidate site was input into the tool to illustrate the step-by-step process required for efficient planning of VSL or VSLRM control. The output of the tool includes the suggested control system at each site, a ranking of the sites based on the expected benefit-to-cost ratio, and guidelines on how to deploy the VSL signs, ramp meters, and detectors at the deployment site(s). This research has the potential to assist traffic engineers in the planning of VSL and VSLRM control, thus enhancing the procedure for allocating limited resources for mobility and safety improvements on highways plagued by recurrent congestion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

presente estudo descreve a prática de aleitamento materno e verifica possíveis fatores de associação com a duração do aleitamento materno exclusivo e aleitamento materno em crianças de escolas particulares do município de São Paulo. Fizeram parte do estudo 566 crianças, com 2 a 6 anos completos de idade. Foi considerada como variável dependente a duração do aleitamento materno (aleitamento materno exclusivo e aleitamento materno), e como independente idade e escolaridade materna, condição de trabalho da mãe e sexo da criança. A caracterização da amostra é apresentada por meio de distribuições de freqüências. A variável aleitamento materno foi descrita em categorias, e para análise foi utilizada como variável contínua. Para a análise da relação entre duração do aleitamento materno e as variáveis independentes utilizou-se a técnica de regressão múltipla de Cox adotando-se critério p < 0,05 para decisão de significância. Não houve associação entre as variáveis estudadas e tempo de duração das duas formas de aleitamento. Cerca de 80% das crianças deixaram de ser amamentadas exclusivamente antes dos seis meses de vida, o que mostra a necessidade de continuar o desenvolvimento de ações para incentivo e apoio à amamentação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents the development of a decision support system for the management of geotechnical and environmental risks in oil pipelines using a geographical information system. The system covers a 48.5 km long section of the So Paulo to Brasilia (OSBRA) oil pipeline, which crosses three municipalities in the northeast region of the So Paulo state (Brazil) and represents an area of 205.8 km(2). The spatial database was created using geo-processing procedures, surface and intrusive investigations and geotechnical reports. The risk assessment was based mainly on qualitative models (relative numeric weights and multicriteria decision analysis) and considered pluvial erosion, slope movements, soil corrosion and third party activities. The maps were produced at a scale of 1:10,000.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the development of an optimization model for the management and operation of a large-scale, multireservoir water supply distribution system with preemptive priorities. The model considers multiobjectives and hedging rules. During periods of drought, when water supply is insufficient to meet the planned demand, appropriate rationing factors are applied to reduce water supply. In this paper, a water distribution system is formulated as a network and solved by the GAMS modeling system for mathematical programming and optimization. A user-friendly interface is developed to facilitate the manipulation of data and to generate graphs and tables for decision makers. The optimization model and its interface form a decision support system (DSS), which can be used to configure a water distribution system to facilitate capacity expansion and reliability studies. Several examples are presented to demonstrate the utility and versatility of the developed DSS under different supply and demand scenarios, including applications to one of the largest water supply systems in the world, the Sao Paulo Metropolitan Area Water Supply Distribution System in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The general objective of this study was to evaluate the ordered weighted averaging (OWA) method, integrated to a geographic information systems (GIS), in the definition of priority areas for forest conservation in a Brazilian river basin, aiming at to increase the regional biodiversity. We demonstrated how one could obtain a range of alternatives by applying OWA, including the one obtained by the weighted linear combination method and, also the use of the analytic hierarchy process (AHP) to structure the decision problem and to assign the importance to each criterion. The criteria considered important to this study were: proximity to forest patches; proximity among forest patches with larger core area; proximity to surface water; distance from roads: distance from urban areas; and vulnerability to erosion. OWA requires two sets of criteria weights: the weights of relative criterion importance and the order weights. Thus, Participatory Technique was used to define the criteria set and the criterion importance (based in AHP). In order to obtain the second set of weights we considered the influence of each criterion, as well as the importance of each one, on this decision-making process. The sensitivity analysis indicated coherence among the criterion importance weights, the order weights, and the solution. According to this analysis, only the proximity to surface water criterion is not important to identify priority areas for forest conservation. Finally, we can highlight that the OWA method is flexible, easy to be implemented and, mainly, it facilitates a better understanding of the alternative land-use suitability patterns. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Geographic Information System (GIS) was used to model datasets of Leyte Island, the Philippines, to identify land which was suitable for a forest extension program on the island. The datasets were modelled to provide maps of the distance of land from cities and towns, land which was a suitable elevation and slope for smallholder forestry and land of various soil types. An expert group was used to assign numeric site suitabilities to the soil types and maps of site suitability were used to assist the selection of municipalities for the provision of extension assistance to smallholders. Modelling of the datasets was facilitated by recent developments of the ArcGIS® suite of computer programs and derivation of elevation and slope was assisted by the availability of digital elevation models (DEM) produced by the Shuttle Radar Topography (SRTM) mission. The usefulness of GIS software as a decision support tool for small-scale forestry extension programs is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Community awareness of the sustainable use of land, water and vegetation resources is increasing. The sustainable use of these resources is pivotal to sustainable farming systems. However, techniques for monitoring the sustainable management of these resources are poorly understood and untested. We propose a framework to benchmark and monitor resources in the grains industry. Eight steps are listed below to achieve these objectives: (i) define industry issues; (ii) identify the issues through growers, stakeholder and community consultation; (iii) identify indicators (measurable attributes, properties or characteristics) of sustainability through consultation with growers, stakeholders, experts and community members, relating to: crop productivity; resource maintenance/enhancement; biodiversity; economic viability; community viability; and institutional structure; (iv) develop and use selection criteria to select indicators that consider: responsiveness to change; ease of capture; community acceptance and involvement; interpretation; measurement error; stability, frequency and cost of measurement; spatial scale issues; and mapping capability in space and through time. The appropriateness of indicators can be evaluated using a decision making system such as a multiobjective decision support system (MO-DSS, a method to assist in decision making from multiple and conflicting objectives); (v) involve stakeholders and the community in the definition of goals and setting benchmarking and monitoring targets for sustainable farming; (vi) take preventive and corrective/remedial action; (vii) evaluate effectiveness of actions taken; and (viii) revise indicators as part of a continual improvement principle designed to achieve best management practice for sustainable farming systems. The major recommendations are to: (i) implement the framework for resources (land, water and vegetation, economic, community and institution) benchmarking and monitoring, and integrate this process with current activities so that awareness, implementation and evolution of sustainable resource management practices become normal practice in the grains industry; (ii) empower the grains industry to take the lead by using relevant sustainability indicators to benchmark and monitor resources; (iii) adopt a collaborative approach by involving various industry, community, catchment management and government agency groups to minimise implementation time. Monitoring programs such as Waterwatch, Soilcheck, Grasscheck and Topcrop should be utilised; (iv) encourage the adoption of a decision making system by growers and industry representatives as a participatory decision and evaluation process. Widespread use of sustainability indicators would assist in validating and refining these indicators and evaluating sustainable farming systems. The indicators could also assist in evaluating best management practices for the grains industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste artigo é apresentado um Sistema de Apoio à Decisão Espacial (SADE) onde os decisores podem facilmente definir diferentes tipos de problemas espaciais recorrendo a diferentes categorias de objetos, pré-definidas ou a definir, associando- lhes características com ou sem dependência espacial, e indicando formas de interferência (impactos) entre essas caracte- rísticas/propriedades. A análise espacial para determinação ou avaliação de configurações alternativas para a localização de diferentes tipos de ocorrências espaciais será feita através da utilização interativa do SADE de acordo com conjuntos de regras intrínsecas aos vários elementos gráficos (objetos, categorias, características, impactos) utilizados na definição dos problemas. O teste à generalidade representativa e analítica do SADE proposto é efectuado recorrendo a um problema concreto, suficientemente específico e complexo, relativo à aplicação de modelos gaussianos para o estudo da dispersão atmosférica de eventuais poluentes resultantes do tratamento de resíduos sólidos. A região em estudo está limitada, neste exemplo, ao município de Coimbra, Portugal. Para este município estão acessíveis, e são utilizados, os dados demográficos ao nível da secção de voto (censos oficiais) e, como tal, é possível a realização de um estudo realístico do impacto com populações humanas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emotion although being an important factor in our every day life it is many times forgotten in the development of systems to be used by persons. In this work we present an architecture for a ubiquitous group decision support system able to support persons in group decision processes. The system considers the emotional factors of the intervenient participants, as well as the argumentation between them. Particular attention will be taken to one of components of this system: the multi-agent simulator, modeling the human participants, considering emotional characteristics, and allowing the exchanges of hypothetic arguments among the participants.