897 resultados para death disposal corpses
Resumo:
Apoptosis is a fundamental biological phenomenon in which the death of a cell is genetically and biochemically regulated. Different molecules are involved in the regulation of the apoptotic process. Death receptors, coupled to distinct members of the caspases as well as other adapter molecules, are involved in the initiation of the stress signals (The Indictment). Members of the Bcl-2 family control at the mitochondrial level the decision between life and death (The Judgement). The effector caspases are responsible for all morphological and biochemical changes related to apoptosis including the "eat-me" signals perceived by phagocytes and neighboring cells (The Execution). Finally, apoptosis would have little biological significance without the recognition and removal of the dying cells (The Burial).
Resumo:
The data reviewed here suggest the possibility that a global reduction of blood supply to the whole brain or solely to the infratentorial structures down to the range of ischemic penumbra for several hours or a few days may lead to misdiagnosis of irreversible brain or brain stem damage in a subset of deeply comatose patients with cephalic areflexia. The following proposals are advanced: 1) the lack of any set of clinically detectable brain functions does not provide a safe diagnosis of brain or brain stem death; 2) apnea testing may induce irreversible brain damage and should be abandoned; 3) moderate hypothermia, antipyresis, prevention of arterial hypotension, and occasionally intra-arterial thrombolysis may contribute to good recovery of a possibly large subset of cases of brain injury currently regarded as irreversible; 4) confirmatory tests for brain death should not replace or delay the administration of potentially effective therapeutic measures; 5) in order to validate confirmatory tests, further research is needed to relate their results to specific levels of blood supply to the brain. The current criteria for the diagnosis of brain death should be revised.
Resumo:
Human localized cutaneous leishmaniasis (LCL), induced by Leishmania braziliensis, ranges from a clinically mild, self-healing disease with localized cutaneous lesions to severe forms which can present secondary metastatic lesions. The T cell-mediated immune response is extremely important to define the outcome of the disease; however, the underlying mechanisms involved are not fully understood. A flow cytometric analysis of incorporation of 7-amino actinomycin D and CD4+ or CD8+ T cell surface phenotyping was used to determine whether different frequencies of early apoptosis or accidental cell death occur at different stages of LCL lesions. When all cells obtained from a biopsy sample were analyzed, larger numbers of early apoptotic and dead cells were observed in lesions from patients with active disease (mean = 39.5 ± 2.7%) as compared with lesions undergoing spontaneous healing (mean = 17.8 ± 2.2%). Cells displaying normal viability patterns obtained from active LCL lesions showed higher numbers of early apoptotic events among CD8+ than among CD4+ T cells (mean = 28.5 ± 3.8 and 15.3 ± 3.0%, respectively). The higher frequency of cell death events in CD8+ T cells from patients with LCL may be associated with an active form of the disease. In addition, low frequencies of early apoptotic events among the CD8+ T cells were observed in two patients with self-healing lesions. Although the number of patients in the latter group was small, it is possible to speculate that, during the immune response, differences in apoptotic events in CD4+ and CD8+ T cell subsets could be responsible for controlling the CD4/CD8 ratio, thus leading to healing or maintenance of disease.
Resumo:
Cellular Ca2+ signals are crucial in the control of most physiological processes, cell injury and programmed cell death through the regulation of a number of Ca2+-dependent enzymes such as phospholipases, proteases, and nucleases. Mitochondria along with the endoplasmic reticulum play pivotal roles in regulating intracellular Ca2+ content. Mitochondria are endowed with multiple Ca2+ transport mechanisms by which they take up and release Ca2+ across their inner membrane. During cellular Ca2+ overload, mitochondria take up cytosolic Ca2+, which in turn induces opening of permeability transition pores and disrupts the mitochondrial membrane potential (Dym). The collapse of Dym along with the release of cytochrome c from mitochondria is followed by the activation of caspases, nuclear fragmentation and cell death. Members of the Bcl-2 family are a group of proteins that play important roles in apoptosis regulation. Members of this family appear to differentially regulate intracellular Ca2+ level. Translocation of Bax, an apoptotic signaling protein, from the cytosol to the mitochondrial membrane is another step in this apoptosis signaling pathway.
Resumo:
The present investigation looks into the attitudes toward death in Paul’s authentic letters, and puts them in relation to modern theories of psychological coping. Drawing on psychologically-oriented hermeneutic theory, and theories about psychological coping in particular, I argue that each case of psychological coping must be understood in its historical situation as strategies emanating from a specific person’s subjective appraisal (cf. Pargament, Lazarus and Folkman). Paul’s letters frequently refer to persecution and violent death. To aid in psychological coping is often integral to the purpose of the letters, which makes the perspective of psychological coping akin to their genre. In the course of a tentatively assumed chronological order of 1 Thessalonians, Galatians, 1 Corinthians, 2 Corinthians, Romans, Philippians, and Philemon, Paul moves from the perception of Jesus dying for the faithful to the understanding of dying with Jesus. His coping strategies concerning death are gradually transformed from conservative and deferring coping styles, to a more self-directing coping style, to collaborative and transformative coping styles, and finally to a new sense of deferring coping style in prison. The last case of deferring coping carries the traits of generosity and flexibility even in the face of death, which is in contrast to his previous letters. Through his correspondence, we see Paul’s attitude toward death transformed from denial to reaction, to processing, to acceptance (cf. Lindemann, Kübler-Ross, Bowlby, Parkes, among others). His strategies also shift in accordance with these understandings. Denial is accompanied by diversion, threat by aggression, processing by rumination, and acceptance by joy. The study shows the hermeneutic benefits of reading Paul’s letters as the rhetorically framed expressions of a person in a particular historical situation. The letters open small windows through which we can glimpse the coping process of a person of antiquity. In adopting the method of psychological exegesis, the study shows that the variety of attitudes toward death in Paul’s letters makes sense from the perspective of psychological coping. The psychological aspect of these letters is an underexamined richness that can extend into areas of contemporary individual and group identity, and from there to public policy and ethics.
Resumo:
The effect of cholesterol on fetal rat enterocytes and IEC-6 cells (line originated from normal rat small intestine) was examined. Both cells were cultured in the presence of 20 to 80 µM cholesterol for up to 72 h. Apoptosis was determined by flow cytometric analysis and fluorescence microscopy. The expression of HMG-CoA reductase and peroxisome proliferator-activated receptor gamma (PPARgamma) was measured by RT-PCR. The addition of 20 µM cholesterol reduced enterocyte proliferation as early as 6 h of culture. Reduction of enterocyte proliferation by 28 and 41% was observed after 24 h of culture in the presence and absence of 10% fetal calf serum, respectively, with the effect lasting up to 72 h. Treatment of IEC-6 cells with cholesterol for 24 h raised the proportion of cells with fragmented DNA by 9.7% at 40 µM and by 20.8% at 80 µM. When the culture period was extended to 48 h, the effect of cholesterol was still more pronounced, with the percent of cells with fragmented DNA reaching 53.5% for 40 µM and 84.3% for 80 µM. Chromatin condensation of IEC-6 cells was observed after treatment with cholesterol even at 20 µM. Cholesterol did not affect HMG-CoA reductase expression. A dose-dependent increase in PPARgamma expression in fetal rat enterocytes was observed. The expression of PPAR-gamma was raised by 7- and 40-fold, in the presence and absence of fetal calf serum, respectively, with cholesterol at 80 mM. The apoptotic effect of cholesterol on enterocytes was possibly due to an increase in PPARgamma expression.
Resumo:
Gamma-irradiation (gamma-IR) is extensively used in the treatment of hormone-resistant prostate carcinoma. The objective of the present study was to investigate the effects of 60Co gamma-IR on the growth, cell cycle arrest and cell death of the human prostate cancer cell line DU 145. The viability of DU 145 cells was measured by the Trypan blue exclusion assay and the 3(4,5-dimethylthiazol-2-yl)-2,5,diphenyltetrazolium bromide test. Bromodeoxyuridine incorporation was used for the determination of cell proliferation. Cell cycle arrest and cell death were analyzed by flow cytometry. Superoxide dismutase (SOD), specifically CuZnSOD and MnSOD protein expression, after 10 Gy gamma-IR, was determined by Western immunoblotting analysis. gamma-IR treatment had a significant (P < 0.001) antiproliferative and cytotoxic effect on DU 145 cells. Both effects were time and dose dependent. Also, the dose of gamma-IR which inhibited DNA synthesis and cell proliferation by 50% was 9.7 Gy. Furthermore, gamma-IR induced cell cycle arrest in the G2/M phase and the percentage of cells in the G2/M phase was increased from 15% (control) to 49% (IR cells), with a nonsignificant induction of apoptosis. Treatment with 10 Gy gamma-IR for 24, 48, and 72 h stimulated CuZnSOD and MnSOD protein expression in a time-dependent manner, approximately by 3- to 3.5-fold. These data suggest that CuZnSOD and MnSOD enzymes may play an important role in the gamma-IR-induced changes in DU 145 cell growth, cell cycle arrest and cell death.
Resumo:
The objective of the present study was to investigate clinical, echocardiographic and electrocardiographic (12-lead resting ECG, 24-h ambulatory ECG monitoring and signal-averaged ECG (SAECG)) parameters in subjects with chronic Chagas' disease in a long-term follow-up as prognostic markers for adverse outcomes. Fifty adult outpatients (34 to 74 years old, 31 females) staged according to Los Andes class I, II or III and complaining of palpitation were enrolled in a longitudinal study. SAECG was analyzed in time and frequency domains and the endpoint was a composite of cardiac death and ventricular tachycardia. During a follow-up of 84.2 ± 39.0 months, 34.0% of the patients developed adverse outcomes (9 cardiac deaths and 11 episodes of ventricular tachycardia). After optimal dichotomization, in a stepwise multivariate Cox-hazard regression model, apical aneurysm (HR = 3.7; 95% CI = 1.2-1.3; P = 0.02), left ventricular ejection fraction <62% (HR = 4.60; 95% CI = 1.39-15.24; P = 0.01) and incidence of ventricular premature contractions >614 per 24 h (hazard ratio = 6.1; 95% CI = 1.7-22.6; P = 0.006) were independent predictors of the composite endpoint. Although a high frequency content in SAECG demonstrated association with the presence of left ventricular dysfunction and myocardial fibrosis, its predictive value for the composite endpoint was not significant. Apical aneurysms, reduced left ventricular function and a high incidence of ventricular ectopic beats over a 24-h period have a strong predictive value for a composite endpoint of cardiac death and ventricular tachycardia in subjects with chronic Chagas' disease.
Resumo:
Mitochondria increase their outer and inner membrane permeability to solutes, protons and metabolites in response to a variety of extrinsic and intrinsic signaling events. The maintenance of cellular and intraorganelle ionic homeostasis, particularly for Ca2+, can determine cell survival or death. Mitochondrial death decision is centered on two processes: inner membrane permeabilization, such as that promoted by the mitochondrial permeability transition pore, formed across inner membranes when Ca2+ reaches a critical threshold, and mitochondrial outer membrane permeabilization, in which the pro-apoptotic proteins BID, BAX, and BAK play active roles. Membrane permeabilization leads to the release of apoptogenic proteins: cytochrome c, apoptosis-inducing factor, Smac/Diablo, HtrA2/Omi, and endonuclease G. Cytochrome c initiates the proteolytic activation of caspases, which in turn cleave hundreds of proteins to produce the morphological and biochemical changes of apoptosis. Voltage-dependent anion channel, cyclophilin D, adenine nucleotide translocase, and the pro-apoptotic proteins BID, BAX, and BAK may be part of the molecular composition of membrane pores leading to mitochondrial permeabilization, but this remains a central question to be resolved. Other transporting pores and channels, including the ceramide channel, the mitochondrial apoptosis-induced channel, as well as a non-specific outer membrane rupture may also be potential release pathways for these apoptogenic factors. In this review, we discuss the mechanistic models by which reactive oxygen species and caspases, via structural and conformational changes of membrane lipids and proteins, promote conditions for inner/outer membrane permeabilization, which may be followed by either opening of pores or a rupture of the outer mitochondrial membrane.
Resumo:
We assessed the risk factors associated with death in patients hospitalized for juvenile systemic lupus erythematosus (JSLE) and evaluated the autopsy reports. A total of 57,159 hospitalizations occurred in our institution from 1994 to 2003, 169 of them involving 71 patients with JSLE. The most recent hospitalization of these patients was evaluated. Patients were divided into two groups based on mortality during hospitalization: those who survived (N = 53) and those who died (N = 18). The main causes of hospitalization were JSLE activity associated with infection in 52% and isolated JSLE activity in 44%. Univariate analysis showed that a greater risk of death was due to severe sepsis (OR = 17.8, CI = 4.5-70.9), systemic lupus erythematosus disease activity index (SLEDAI) ³8 (OR = 7.6, CI = 1.1-53.8), general infections (OR = 6.1, CI = 1.5-25), fungal infections (OR = 5.4, CI = 3.2-9), acute renal failure (OR = 5.1, CI = 2.5-10.4), acute thrombocytopenia (OR = 3.9, CI = 1.9-8.4), and bacterial infections (OR = 2.3, CI = 1.2-7.5). Stratified analysis showed that severe sepsis and SLEDAI ³8 were not confounder variables. In the multivariate analysis, logistic regression showed that the only independent variable in death prediction was severe sepsis (OR = 98, CI = 16.3-586.2). Discordance between clinical diagnosis and autopsy was observed in 6/10 cases. Mortality of hospitalized JSLE patients was associated with severe sepsis. Autopsy was important to determine events not detected or doubtful in dead patients and should always be requested.
Resumo:
Intrahippocampal administration of kainic acid (KA) induces synaptic release of neurotrophins, mainly brain-derived neurotrophic factor, which contributes to the acute neuronal excitation produced by the toxin. Two protein tyrosine kinase inhibitors, herbimycin A and K252a, were administered intracerebroventricularly, in a single dose, to attenuate neurotrophin signaling during the acute effects of KA, and their role in epileptogenesis was evaluated in adult, male Wistar rats weighing 250-300 g. The latency for the first Racine stage V seizure was 90 ± 8 min in saline controls (N = 4) which increased to 369 ± 71 and 322 ± 63 min in animals receiving herbimycin A (1.74 nmol, N = 4) and K252a (10 pmol, N = 4), respectively. Behavioral alterations were accompanied by diminished duration of EEG paroxysms in herbimycin A- and K252a-treated animals. Notwithstanding the reduction in seizure severity, cell death (60-90% of cell loss in KA-treated animals) in limbic regions was unchanged by herbimycin A and K252a. However, aberrant mossy fiber sprouting was significantly reduced in the ipsilateral dorsal hippocampus of K252a-treated animals. In this model of temporal lobe epilepsy, both protein kinase inhibitors diminished the acute epileptic activity triggered by KA and the ensuing morphological alterations in the dentate gyrus without diminishing cell loss. Our current data indicating that K252a, but not herbimycin, has an influence over KA-induced mossy fiber sprouting further suggest that protein tyrosine kinase receptors are not the only factors which control this plasticity. Further experiments are necessary to elucidate the exact signaling systems associated with this K252a effect.
Resumo:
The objective of the present study was to determine whether lesion of the subthalamic nucleus (STN) promoted by N-methyl-D-aspartate (NMDA) would rescue nigrostriatal dopaminergic neurons after unilateral 6-hydroxydopamine (6-OHDA) injection into the medial forebrain bundle (MFB). Initially, 16 mg 6-OHDA (6-OHDA group) or vehicle (artificial cerebrospinal fluid - aCSF; Sham group) was infused into the right MFB of adult male Wistar rats. Fifteen days after surgery, the 6-OHDA and SHAM groups were randomly subdivided and received ipsilateral injection of either 60 mM NMDA or aCSF in the right STN. Additionally, a control group was not submitted to stereotaxic surgery. Five groups of rats were studied: 6-OHDA/NMDA, 6-OHDA/Sham, Sham/NMDA, Sham/Sham, and Control. Fourteen days after injection of 6-OHDA, rats were submitted to the rotational test induced by apomorphine (0.1 mg/kg, ip) and to the open-field test. The same tests were performed again 14 days after NMDA-induced lesion of the STN. The STN lesion reduced the contralateral turns induced by apomorphine and blocked the progression of motor impairment in the open-field test in 6-OHDA-treated rats. However, lesion of the STN did not prevent the reduction of striatal concentrations of dopamine and metabolites or the number of nigrostriatal dopaminergic neurons after 6-OHDA lesion. Therefore, STN lesion is able to reverse motor deficits after severe 6-OHDA-induced lesion of the nigrostriatal pathway, but does not protect or rescue dopaminergic neurons in the substantia nigra pars compacta.
Resumo:
The effectiveness of the caspase-9-based artificial "death switch" as a safety measure for gene therapy based on the erythropoietin (Epo) hormone was tested in vitro and in vivo using the chemical inducer of dimerization, AP20187. Plasmids encoding the dimeric murine Epo, the tetracycline-controlled transactivator and inducible caspase 9 (ptet-mEpoD, ptet-tTAk and pSH1/Sn-E-Fv’-Fvls-casp9-E, respectively) were used in this study. AP20187 induced apoptosis of iCasp9-modified C2C12 myoblasts. In vivo, two groups of male C57BI/6 mice, 8-12 weeks old, were injected intramuscularly with 5 µg/50 g ptet-mEpoD and 0.5 µg/50 g ptet-tTAk. There were 20 animals in group 1 and 36 animals in group 2. Animals from group 2 were also injected with the 6 µg/50 g iCasp9 plasmid. Seventy percent of the animals showed an increase in hematocrit of more than 65% for more than 15 weeks. AP20187 administration significantly reduced hematocrit and plasma Epo levels in 30% of the animals belonging to group 2. TUNEL-positive cells were detected in the muscle of at least 50% of the animals treated with AP20187. Doxycycline administration was efficient in controlling Epo secretion in both groups. We conclude that inducible caspase 9 did not interfere with gene transfer, gene expression or tetracycline control and may be used as a safety mechanism for gene therapy. However, more studies are necessary to improve the efficacy of this technique, for example, the use of lentivirus vector.
Resumo:
We examined the degeneration of post-mitotic ganglion cells in ex-vivo neonatal retinal explants following axon damage. Ultrastructural features of both apoptosis and autophagy were detected. Degenerating cells reacted with antibodies specific for activated caspase-3 or -9, consistent with the presence of caspase activity. Furthermore, peptidic inhibitors of caspase-9, -6 or -3 prevented cell death (100 µM Ac-LEDH-CHO, 50 µM Ac-VEID-CHO and 10 µM Z-DEVD-fmk, respectively). Interestingly, inhibition of autophagy by 7-10 mM 3-methyl-adenine increased the rate of cell death. Immunohistochemistry data, caspase activation and caspase inhibition data suggest that axotomy of neonatal retinal ganglion cells triggers the intrinsic apoptotic pathway, which, in turn, is counteracted by a pro-survival autophagic response, demonstrated by electron microscopy profiles and pharmacological autophagy inhibitor.
Resumo:
The SEARCH-RIO study prospectively investigated electrocardiogram (ECG)-derived variables in chronic Chagas disease (CCD) as predictors of cardiac death and new onset ventricular tachycardia (VT). Cardiac arrhythmia is a major cause of death in CCD, and electrical markers may play a significant role in risk stratification. One hundred clinically stable outpatients with CCD were enrolled in this study. They initially underwent a 12-lead resting ECG, signal-averaged ECG, and 24-h ambulatory ECG. Abnormal Q-waves, filtered QRS duration, intraventricular electrical transients (IVET), 24-h standard deviation of normal RR intervals (SDNN), and VT were assessed. Echocardiograms assessed left ventricular ejection fraction. Predictors of cardiac death and new onset VT were identified in a Cox proportional hazard model. During a mean follow-up of 95.3 months, 36 patients had adverse events: 22 new onset VT (mean±SD, 18.4±4‰/year) and 20 deaths (26.4±1.8‰/year). In multivariate analysis, only Q-wave (hazard ratio, HR=6.7; P<0.001), VT (HR=5.3; P<0.001), SDNN<100 ms (HR=4.0; P=0.006), and IVET+ (HR=3.0; P=0.04) were independent predictors of the composite endpoint of cardiac death and new onset VT. A prognostic score was developed by weighting points proportional to beta coefficients and summing-up: Q-wave=2; VT=2; SDNN<100 ms=1; IVET+=1. Receiver operating characteristic curve analysis optimized the cutoff value at >1. In 10,000 bootstraps, the C-statistic of this novel score was non-inferior to a previously validated (Rassi) score (0.89±0.03 and 0.80±0.05, respectively; test for non-inferiority: P<0.001). In CCD, surface ECG-derived variables are predictors of cardiac death and new onset VT.