890 resultados para cyber-physical system (CPS)
Resumo:
Abstract
Background Physical inactivity is a major public health concern, and more innovative approaches are urgently needed to address it. The UK Government supports the use of incentives and so-called nudges to encourage healthy behaviour changes, and has encouraged business sector involvement in public health through the Public Health Responsibility Deal. To test the effectiveness of provision of incentives to encourage adults to increase their physical activity, we
recruited 406 adults from a workplace setting (office-based) to take part in an assessor-blind randomised controlled trial.
Methods
We developed the physical activity loyalty card scheme, which integrates a novel physical activity tracking system with web-based monitoring (palcard). Participants were recruited from two buildings at Northern Ireland’s main
government offices and were randomly allocated (grouped by building [n=2] to reduce contamination) to either incentive group (n=199) or no incentive group (n=207). We included participants aged 16–65 years, based at the worksite 4 days or more per week and for 6 h or more per day, and able to complete 15 min of moderate-paced walking (self-report). Exclusion criteria included having received specific advice by a general practitioner not to exercise. A statistician not involved in administration of the trial prepared a computer-generated random allocation sequence. Random assignments were placed in individually numbered, sealed envelopes by the statistician to ensure concealment of allocation. Only the assessor was masked to assignment. Sensors were placed along footpaths and the gym in the workplace. Participants scanned their loyalty card at the sensor when undertaking physical activity (eg, walking), which logged activity. Participants in the incentive group monitored their physical activity, collected points, and received rewards (retail vouchers) for minutes of physical activity completed over the 12-week intervention. Rewards were vouchers sponsored by local retailers. Participants in the no incentive group used their loyalty card to self-monitor their physical activity but were not able to earn points or receive rewards. The primary outcome was change in minutes of moderate to vigorous physical activity with the Global Physical Activity Questionnaire, measured at baseline, week 12, and 6 months. Activity was objectively measured with the tracking system over the 12-week intervention. Mann Whitney U tests were done to assess change between groups.
Findings
The mean age of participants was 43·32 years (SD 9·37), and 272 (67%) were women. We obtained follow-up data from 353 (87%) participants at week 12 and 341 (84%) at 6 months. At week 12, participants in the incentive group increased moderate to vigorous physical activity by a median of 60 min per week (IQR –10 to 120) compared with 30 min per week (–60 to 90) in the no incentive group (p=0·05). At 6 months, participants in the incentive group had
increased their moderate to vigorous physical activity by 30 min per week (–60 to 100) from baseline compared with 0 min per week (–115 to 1110) in the no incentive group (p=0·099). We noted no significant differences between groups
for use of loyalty card (p=0·18). Participants in the incentive group recorded a mean of 60·22 min (95% CI 50·90–69·55) of physical activity per week with their loyalty card on week 1 and 23·56 min (17·06–30·06) at week 12, which was similar to that for those in the no incentive group (59·74 min, 51·24–68·23, at week 1; 20·25 min, 14·45–26·06, at week 12; p=0·94 for differences between groups at week 1; p=0·45 for differences between groups at week 12).
Interpretation:
Financial incentives showed a short-term behaviour change in physical activity. This innovative study contributes to the necessary evidence base, and has important implications for physical activity promotion and business engagement in health. The optimum incentive-based approach needs to be established. Results should be interpreted with some caution as the analyses of secondary outcomes were not adjusted for multiple comparisons.
Resumo:
The effect of applied magnetic fields on the collective nonequilibrium dynamics of a strongly interacting Fe-C nanoparticle system has been investigated. It is experimentally shown that the magnetic aging diminishes to finally disappear for fields of moderate strength. The field needed to remove the observable aging behavior increases with decreasing temperature. The same qualitative behavior is observed in an amorphous metallic spin glass (Fe0.15Ni0.85)(75)P16B6Al3.
Resumo:
There has been much interest recently in the analysis of optomechanical systems incorporating dielectric nano- or microspheres inside a cavity field. We analyse here the situation when one of the mirrors of the cavity itself is also allowed to move. We reveal that the interplay between the two oscillators yields a cross-coupling that results in, e.g., appreciable cooling and squeezing of the motion of the sphere, despite its nominal quadratic coupling. We also discuss a simple modification that would allow this cross-coupling to be removed at will, thereby yielding a purely quadratic coupling for the sphere.
Resumo:
Endogenous electric fields (EF) have long been known to influence cell behaviour during development, neural cell tropism, wound healing and cell behaviour generally. The effect is based on short circuiting of electrical potential differences across cell and tissue boundaries generated by ionic segregation. Recent in vitro and in vivo studies have shown that EF regulate not only cell movement but orientation of cells during mitosis, an effect which may underlie shaping of tissues and organs. The molecular basis of this effect is founded on receptor-mediated cell signalling events and alterations in cytoskeletal function as revealed in studies of gene deficient cells. Remarkably, not all cells respond directionally to EF in the same way and this has consequences, for instance, for lens development and vascular remodelling. The physical basis of EF effect may be related to changes induced in 'bound water' at the cell surface, whose organisation in association with trans-membrane proteins (e.g. receptors) is disrupted when EF are generated. Copyright © 2007 S. Karger AG.
Resumo:
We study the statistics of the work done, the fluctuation relations and the irreversible entropy production in a quantum many-body system subject to the sudden quench of a control parameter. By treating the quench as a thermodynamic transformation we show that the emergence of irreversibility in the nonequilibrium dynamics of closed many-body quantum systems can be accurately characterized. We demonstrate our ideas by considering a transverse quantum Ising model that is taken out of equilibrium by the instantaneous switching of the transverse field.
Resumo:
Densities, rho, of aqueous solutions of the room temperature protic ionic liquid (PIL), pyrrolidinium nitrate are determined at the atmospheric pressure over the temperature range from (283.15 to 323.15) K and within the whole composition range. The molar isobaric heat capacities, C(p), and refractive index, n(D), of {PIL + water} binary system are measured at 298.15 K. The excess molar volumes V(E), excess molar isobaric heat capacities C(p)(E), and deviation from ideality of refractive index Delta(phi)n, of pyrrolidinium nitrate aqueous solutions were deduced from the experimental results as well as apparent molar volumes V(phi), partial molar volumes (V) over bar (m,i), and thermal expansion coefficients alpha(p). The V(E) values were found to be positive over the entire composition range at all temperatures studied therein, whereas deviations from ideality were negative for refractive index Delta(phi)n. The volumetric properties of binary mixtures containing water and four other protic ionic liquids, such as pyrrolidinium hydrogen sulfate, pyrrolidinium formiate, collidinium formate, and diisopropyl-ethylammonium formate were also determined at 298.15 K. Results have been then discussed in terms of molecular interactions and molecular structures in these binary mixtures. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background: Financial incentives have been advocated by the UK and U.S. governments to encourage adoption of healthy lifestyles. However, evidence to support the use of incentives for changing physical activity (PA) behavior is sparse.
Purpose:To investigate the effectiveness of?nancial incentives to increase PA in adults in the workplace.
Design: Two-arm quasi-experimental design.
Setting/participants: Employees (n¼406) in a workplace setting in Belfast, Northern Ireland, UK.
Intervention: Using a loyalty card to collect points and earn rewards, participants (n¼199) in the Incentive Group monitored their PA levels and received ?nancial incentives (retail vouchers) for minutes of PA completed over the course of a 12-week intervention period. Participants (n¼207) in the comparison group used their loyalty card to self-monitor their PA levels but were not able to earn points or obtain incentives (No Incentive Group).
Main outcome measures:The primary outcome was minutes of PA objectively measured using a novel PA tracking system at baseline (April 2011); Week 6 (June 2011); and Week 12 (July 2011).
Other outcomes, including a self-report measure of PA, were collected at baseline, Week 12, and 6 months (October 2011). Data were analyzed in June 2012.
Results: No signi?cant differences between groups were found for primary or secondary outcomes at the 12-week and 6-month assessments. Participants in the Incentive Group recorded 17.52 minutes of PA/week (95% CI¼12.49, 22.56) compared to 16.63 minutes/week (95% CI¼11.76, 21.51) in the No Incentive Group at Week 12 (p¼0.59). At 6 months, participants in the Incentive Group recorded 26.18 minutes of PA/week (95% CI¼20.06, 32.29) compared to 24.00 minutes/week (95% CI¼17.45, 30.54) in the No Incentive Group (p¼0.45).
Conclusions: Financial incentives did not encourage participants to undertake more PA than selfmonitoring PA. This study contributes to the evidence base and has important implications for increasing participation in physical activity and fostering links with the business sector. (Am J Prev Med 2013;45(1):56–63) © 2013 American Journal of Preventive Medicine
Resumo:
Practical demonstration of the operational advantages gained through the use of a co-operating retrodirective array (RDA) basestation and Van Atta node arrangements is discussed. The system exploits a number of inherent RDA features to provide analogue real time multifunctional operation at low physical complexity. An active dual-conversion four element RDA is used as the power distribution source (basestation) while simultaneously achieving a receive sensitivity level of ??109 dBm and 3 dB automatic beam steering angle of ??45??. When mobile units are each equipped with a semi-passive four element Van Atta array, it is shown mobile device orientation issues are mitigated and optimal energy transfer can occur because of automatic beam formation resulting from retrodirective self-pointing action. We show that operation in multipath rich environments with or without line of sight acts to reduce average power density limits in the operating volume with high energy density occurring at mobile nodes sites only. The system described can be used as a full duplex ASK communications link, or, as a means for remote node charging by wireless means, thereby enhancing deployment opportunities between unstabilised moving platforms.
Resumo:
Greater complexity and interconnectivity across systems embracing Smart Grid technologies has meant that cyber-security issues have attracted significant attention. This paper describes pertinent cyber-security requirements, in particular cyber attacks and countermeasures which are critical for reliable Smart Grid operation. Relevant published literature is presented for critical aspects of Smart Grid cyber-security, such as vulnerability, interdependency, simulation, and standards. Furthermore, a preliminary study case is given which demonstrates the impact of a cyber attack which violates the integrity of data on the load management of real power system. Finally, the paper proposes future work plan which focuses on applying intrusion detection and prevention technology to address cyber-security issues. This paper also provides an overview of Smart Grid cyber-security with reference to related cross-disciplinary research topics.
Resumo:
Increased complexity and interconnectivity of Supervisory Control and Data Acquisition (SCADA) systems in Smart Grids potentially means greater susceptibility to malicious attackers. SCADA systems with legacy communication infrastructure have inherent cyber-security vulnerabilities as these systems were originally designed with little consideration of cyber threats. In order to improve cyber-security of SCADA networks, this paper presents a rule-based Intrusion Detection System (IDS) using a Deep Packet Inspection (DPI) method, which includes signature-based and model-based approaches tailored for SCADA systems. The proposed signature-based rules can accurately detect several known suspicious or malicious attacks. In addition, model-based detection is proposed as a complementary method to detect unknown attacks. Finally, proposed intrusion detection approaches for SCADA networks are implemented and verified using a ruled based method.
Resumo:
Synchrophasor systems will play a crucial role in next generation Smart Grid monitoring, protection and control. However these systems also introduce a multitude of potential vulnerabilities from malicious and inadvertent attacks, which may render erroneous operation or severe damage. This paper proposes a Synchrophasor Specific Intrusion Detection System (SSIDS) for malicious cyber attack and unintended misuse. The SSIDS comprises a heterogeneous whitelist and behavior-based approach to detect known attack types and unknown and so-called ‘zero-day’ vulnerabilities and attacks. The paper describes reconnaissance, Man-in-the-Middle (MITM) and Denial-of-Service (DoS) attack types executed against a practical synchrophasor system which are used to validate the real-time effectiveness of the proposed SSIDS cyber detection method.
Resumo:
Increased complexity and interconnectivity of Supervisory Control and Data Acquisition (SCADA) systems in Smart Grids potentially means greater susceptibility to malicious attackers. SCADA systems with legacy communication infrastructure have inherent cyber-security vulnerabilities as these systems were originally designed with little consideration of cyber threats. In order to improve cyber-security of SCADA networks, this paper presents a rule-based Intrusion Detection System (IDS) using a Deep Packet Inspection (DPI) method, which includes signature-based and model-based approaches tailored for SCADA systems. The proposed signature-based rules can accurately detect several known suspicious or malicious attacks. In addition, model-based detection is proposed as a complementary method to detect unknown attacks. Finally, proposed intrusion detection approaches for SCADA networks are implemented and verified via Snort rules.
Resumo:
The increased interconnectivity and complexity of supervisory control and data acquisition (SCADA) systems in power system networks has exposed the systems to a multitude of potential vulnerabilities. In this paper, we present a novel approach for a next-generation SCADA-specific intrusion detection system (IDS). The proposed system analyzes multiple attributes in order to provide a comprehensive solution that is able to mitigate varied cyber-attack threats. The multiattribute IDS comprises a heterogeneous white list and behavior-based concept in order to make SCADA cybersystems more secure. This paper also proposes a multilayer cyber-security framework based on IDS for protecting SCADA cybersecurity in smart grids without compromising the availability of normal data. In addition, this paper presents a SCADA-specific cybersecurity testbed to investigate simulated attacks, which has been used in this paper to validate the proposed approach.
Resumo:
Physical Access Control Systems are commonly used to secure doors in buildings such as airports, hospitals, government buildings and offices. These systems are designed primarily to provide an authentication mechanism, but they also log each door access as a transaction in a database. Unsupervised learning techniques can be used to detect inconsistencies or anomalies in the mobility data, such as a cloned or forged Access Badge, or unusual behaviour by staff members. In this paper, we present an overview of our method of inferring directed graphs to represent a physical building network and the flows of mobility within it. We demonstrate how the graphs can be used for Visual Data Exploration, and outline how to apply algorithms based on Information Theory to the graph data in order to detect inconsistent or abnormal behaviour.