816 resultados para cryptography algorithm
Resumo:
An efficient heuristic algorithm is presented in this work in order to solve the optimal capacitor placement problem in radial distribution systems. The proposal uses the solution from the mathematical model after relaxing the integrality of the discrete variables as a strategy to identify the most attractive bus to add capacitors to each step of the heuristic algorithm. The relaxed mathematical model is a nonlinear programming problem and is solved using a specialized interior point method, The algorithm still incorporates an additional strategy of local search that enables the finding of a group of quality solutions after small alterations in the optimization strategy. Proposed solution methodology has been implemented and tested in known electric systems getting a satisfactory outcome compared with metaheuristic methods.The tests carried out in electric systems known in specialized literature reveal the satisfactory outcome of the proposed algorithm compared with metaheuristic methods. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work presents the application of a multiobjective evolutionary algorithm (MOEA) for optimal power flow (OPF) solution. The OPF is modeled as a constrained nonlinear optimization problem, non-convex of large-scale, with continuous and discrete variables. The violated inequality constraints are treated as objective function of the problem. This strategy allows attending the physical and operational restrictions without compromise the quality of the found solutions. The developed MOEA is based on the theory of Pareto and employs a diversity-preserving mechanism to overcome the premature convergence of algorithm and local optimal solutions. Fuzzy set theory is employed to extract the best compromises of the Pareto set. Results for the IEEE-30, RTS-96 and IEEE-354 test systems are presents to validate the efficiency of proposed model and solution technique.
Resumo:
In this paper an efficient algorithm for probabilistic analysis of unbalanced three-phase weakly-meshed distribution systems is presented. This algorithm uses the technique of Two-Point Estimate Method for calculating the probabilistic behavior of the system random variables. Additionally, the deterministic analysis of the state variables is performed by means of a Compensation-Based Radial Load Flow (CBRLF). Such load flow efficiently exploits the topological characteristics of the network. To deal with distributed generation, a strategy to incorporate a simplified model of a generator in the CBRLF is proposed. Thus, depending on the type of control and generator operation conditions, the node with distributed generation can be modeled either as a PV or PQ node. To validate the efficiency of the proposed algorithm, the IEEE 37 bus test system is used. The probabilistic results are compared with those obtained using the Monte Carlo method.
Resumo:
In this paper we deal with the problem of feature selection by introducing a new approach based on Gravitational Search Algorithm (GSA). The proposed algorithm combines the optimization behavior of GSA together with the speed of Optimum-Path Forest (OPF) classifier in order to provide a fast and accurate framework for feature selection. Experiments on datasets obtained from a wide range of applications, such as vowel recognition, image classification and fraud detection in power distribution systems are conducted in order to asses the robustness of the proposed technique against Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and a Particle Swarm Optimization (PSO)-based algorithm for feature selection.
Resumo:
We consider the problem of blocking response surface designs when the block sizes are prespecified to control variation efficiently and the treatment set is chosen independently of the block structure. We show how the loss of information due to blocking is related to scores defined by Mead and present an interchange algorithm based on scores to improve a given blocked design. Examples illustrating the performance of the algorithm are given and some comparisons with other designs are made. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
A novel common Tabu algorithm for global optimizations of engineering problems is presented. The robustness and efficiency of the presented method are evaluated by using standard mathematical functions and hy solving a practical engineering problem. The numerical results show that the proposed method is (i) superior to the conventional Tabu search algorithm in robustness, and (ii) superior to the simulated annealing algorithm in efficiency. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
An algorithm for deriving a continued fraction that corresponds to two series expansions simultaneously, when there are zero coefficients in one or both series, is given. It is based on using the Q-D algorithm to derive the corresponding fraction for two related series, and then transforming it into the required continued fraction. Two examples are given. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The study of robust design methodologies and techniques has become a new topical area in design optimizations in nearly all engineering and applied science disciplines in the last 10 years due to inevitable and unavoidable imprecision or uncertainty which is existed in real word design problems. To develop a fast optimizer for robust designs, a methodology based on polynomial chaos and tabu search algorithm is proposed. In the methodology, the polynomial chaos is employed as a stochastic response surface model of the objective function to efficiently evaluate the robust performance parameter while a mechanism to assign expected fitness only to promising solutions is introduced in tabu search algorithm to minimize the requirement for determining robust metrics of intermediate solutions. The proposed methodology is applied to the robust design of a practical inverse problem with satisfactory results.
Resumo:
In this work, genetic algorithms concepts along with a rotamer library for proteins side chains are used to optimize the tertiary structure of the hydrophobic core of Cytochrome b(562) starting from the known PDB structure of its backbone which is kept fixed while the side chains of the hydrophobic core are allowed to adopt the conformations present in the rotamer library. The atoms of the side chains forming the core interact via van der Waals energy. Besides the prediction of the native core structure, it is also suggested a set of different amino acid sequences for this core. Comparison between these new cores and the native are made in terms of their volumes, van der Waals energies values and the numbers of contacts made by the side chains forming the cores. This paper proves that genetic algorithms area efficient to design new sequence for the protein core. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A new version of the relaxation algorithm is proposed in order to obtain the stationary ground-state solutions of nonlinear Schrodinger-type equations, including the hyperbolic solutions. In a first example, the method is applied to the three-dimensional Gross-Pitaevskii equation, describing a condensed atomic system with attractive two-body interaction in a non-symmetrical trap, to obtain results for the unstable branch. Next, the approach is also shown to be very reliable and easy to be implemented in a non-symmetrical case that we have bifurcation, with nonlinear cubic and quintic terms. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
An uncomplicated and easy handling prescription that converts the task of checking the unitarity of massive, topologically massive, models into a straightforward algebraic exercise, is developed. The algorithm is used to test the unitarity of both topologically massive higher-derivative electromagnetism (TMHDE) and topologically massive higher-derivative gravity (TMHDG). The novel and amazing features of these effective field models are also discussed.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper introduces an improved tabu-based vector optimal algorithm for multiobjective optimal designs of electromagnetic devices. The improvements include a division of the entire search process, a new method for fitness assignment, a novel scheme for the generation and selection of neighborhood solutions, and so forth. Numerical results on a mathematical function and an engineering multiobjective design problem demonstrate that the proposed method can produce virtually the exact Pareto front, in both parameter and objective spaces, even though the iteration number used by it is only about 70% of that required by its ancestor.
Resumo:
A novel constructive heuristic algorithm to the network expansion planning problem is presented the basic idea comes from Garver's work applied to the transportation model, nevertheless the proposed algorithm is for the DC model. Tests results with most known systems in the literature are carried out to show the efficiency of the method.