901 resultados para cryptographic grid
Resumo:
This paper presents a method to interpolate a periodic band-limited signal from its samples lying at nonuniform positions in a regular grid, which is based on the FFT and has the same complexity order as this last algorithm. This kind of interpolation is usually termed “the missing samples problem” in the literature, and there exists a wide variety of iterative and direct methods for its solution. The one presented in this paper is a direct method that exploits the properties of the so-called erasure polynomial and provides a significant improvement on the most efficient method in the literature, which seems to be the burst error recovery (BER) technique of Marvasti’s The paper includes numerical assessments of the method’s stability and complexity.
Resumo:
Tese de mestrado integrado, Engenharia da Energia e do Ambiente, Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
Physiognomic traits of plant leaves such as size, shape or margin are decisively affected by the prevailing environmental conditions of the plant habitat. On the other hand, if a relationship between environment and leaf physiognomy can be shown to exist, vegetation represents a proxy for environmental conditions. This study investigates the relationship between physiognomic traits of leaves from European hardwood vegetation and environmental parameters in order to create a calibration dataset based on high resolution grid cell data. The leaf data are obtained from synthetic chorologic floras, the environmental data comprise climatic and ecologic data. The high resolution of the data allows for a detailed analysis of the spatial dependencies between the investigated parameters. The comparison of environmental parameters and leaf physiognomic characters reveals a clear correlation between temperature related parameters (e.g. mean annual temperature or ground frost frequency) and the expression of leaf characters (e.g. the type of leaf margin or the base of the lamina). Precipitation related parameters (e.g. mean annual precipitation), however, show no correlation with the leaf physiognomic composition of the vegetation. On the basis of these results, transfer functions for several environmental parameters are calculated from the leaf physiognomic composition of the extant vegetation. In a next step, a cluster analysis is applied to the dataset in order to identify "leaf physiognomic communities". Several of these are distinguished, characterised and subsequently used for vegetation classification. Concerning the leaf physiognomic diversity there are precise differences between each of these "leaf physiognomic classes". There is a clear increase of leaf physiognomic diversity with increasing variability of the environmental parameters: Northern vegetation types are characterised by a more or less homogeneous leaf physiognomic composition whereas southern vegetation types like the Mediterranean vegetation show a considerable higher leaf physiognomic diversity. Finally, the transfer functions are used to estimate palaeo-environmental parameters of three fossil European leaf assemblages from Late Oligocene and Middle Miocene. The results are compared with results obtained from other palaeo-environmental reconstructing methods. The estimates based on a direct linear ordination seem to be the most realistic ones, as they are highly consistent with the Coexistence Approach.
Resumo:
Vol. 1: "DOE/ERA-0056/1"; v. 2: "DOE/ERA-0056-2."
Resumo:
"August 1980."
Resumo:
"August 1965."
Resumo:
Includes bibliographical references.
Resumo:
"This manual supersedes TM 5-241-1, 14 September, 1962."
Resumo:
Samples of the cyanobacterium Microcystis aeruginosa from a small pond were used in laboratory experiments with a grid-stirred tank to quantify the effect of turbulent mixing on colony size. Turbulent dissipation in the tank was varied from 10(-9) m(2) s(-3) to 10(-4) m(2) s(-3), covering the range of turbulence intensities experienced by M. aeruginosa colonies in the field and exceeding the maximum dissipation by two orders of magnitude. Large colonies broke up into smaller colonies during the experiments; the mass fraction of colonies with diameter less than 200 mum increased over time. Colony disaggregation was observed to increase with turbulent dissipation. The maximum stable colony diameter across all experiments was in the range 220-420 mum. The overall change in size distribution during the experiments was relatively small, and the colony size distribution remained very broad throughout the experiments. Since colony size affects migration velocity, susceptibility to grazing and surface area to volume ratios, more work is needed to determine how to best represent this broad size distribution when modelling M. aeruginosa populations.
Resumo:
Grid connected PhotoVoltaic (PV) inverters fall into three broad categories — Central, String and Module Integrated Converers (MICs). MICs offer any avantaes in performance and flexibility, but are at a cost disadvantage. Two alternative novel approaches proposed by the author — cascaded dc-dc MICs and bypass dc-dc MICs — integrate a simple non-isolated intelligent dc-dc converter with each PV module to provide the advantages of dc-ac MICs at a lower cost. A suitable universal 150W 5A dc-dc converter design is presented based on two interleaved MOSFET half bridges. Testing shows Zero Voltage Switching (ZVS) keeps losses under 1W for bi-directional power flows up to 15W between two adjacent 12V PV modules for the bypass application, and efficiencies over 94% for most of the operational power range for the cascaded converter application. Based on the experimental results, potential optimizations to further reduce losses are discussed.