873 resultados para constrained clustering
Resumo:
Scheduling of constrained deadline sporadic task systems on multiprocessor platforms is an area which has received much attention in the recent past. It is widely believed that finding an optimal scheduler is hard, and therefore most studies have focused on developing algorithms with good processor utilization bounds. These algorithms can be broadly classified into two categories: partitioned scheduling in which tasks are statically assigned to individual processors, and global scheduling in which each task is allowed to execute on any processor in the platform. In this paper we consider a third, more general, approach called cluster-based scheduling. In this approach each task is statically assigned to a processor cluster, tasks in each cluster are globally scheduled among themselves, and clusters in turn are scheduled on the multiprocessor platform. We develop techniques to support such cluster-based scheduling algorithms, and also consider properties that minimize total processor utilization of individual clusters. In the last part of this paper, we develop new virtual cluster-based scheduling algorithms. For implicit deadline sporadic task systems, we develop an optimal scheduling algorithm that is neither Pfair nor ERfair. We also show that the processor utilization bound of us-edf{m/(2m−1)} can be improved by using virtual clustering. Since neither partitioned nor global strategies dominate over the other, cluster-based scheduling is a natural direction for research towards achieving improved processor utilization bounds.
Resumo:
This paper presents a biased random-key genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. Active schedules are constructed using a priority-rule heuristic in which the priorities of the activities are defined by the genetic algorithm. A forward-backward improvement procedure is applied to all solutions. The chromosomes supplied by the genetic algorithm are adjusted to reflect the solutions obtained by the improvement procedure. The heuristic is tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
In the present paper we focus on the performance of clustering algorithms using indices of paired agreement to measure the accordance between clusters and an a priori known structure. We specifically propose a method to correct all indices considered for agreement by chance - the adjusted indices are meant to provide a realistic measure of clustering performance. The proposed method enables the correction of virtually any index - overcoming previous limitations known in the literature - and provides very precise results. We use simulated datasets under diverse scenarios and discuss the pertinence of our proposal which is particularly relevant when poorly separated clusters are considered. Finally we compare the performance of EM and KMeans algorithms, within each of the simulated scenarios and generally conclude that EM generally yields best results.
Resumo:
A procura de padrões nos dados de modo a formar grupos é conhecida como aglomeração de dados ou clustering, sendo uma das tarefas mais realizadas em mineração de dados e reconhecimento de padrões. Nesta dissertação é abordado o conceito de entropia e são usados algoritmos com critérios entrópicos para fazer clustering em dados biomédicos. O uso da entropia para efetuar clustering é relativamente recente e surge numa tentativa da utilização da capacidade que a entropia possui de extrair da distribuição dos dados informação de ordem superior, para usá-la como o critério na formação de grupos (clusters) ou então para complementar/melhorar algoritmos existentes, numa busca de obtenção de melhores resultados. Alguns trabalhos envolvendo o uso de algoritmos baseados em critérios entrópicos demonstraram resultados positivos na análise de dados reais. Neste trabalho, exploraram-se alguns algoritmos baseados em critérios entrópicos e a sua aplicabilidade a dados biomédicos, numa tentativa de avaliar a adequação destes algoritmos a este tipo de dados. Os resultados dos algoritmos testados são comparados com os obtidos por outros algoritmos mais “convencionais" como o k-médias, os algoritmos de spectral clustering e um algoritmo baseado em densidade.
Resumo:
This paper presents a genetic algorithm for the Resource Constrained Project Scheduling Problem (RCPSP). The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities of the activities are defined by the genetic algorithm. The heuristic generates parameterized active schedules. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
In the present paper we compare clustering solutions using indices of paired agreement. We propose a new method - IADJUST - to correct indices of paired agreement, excluding agreement by chance. This new method overcomes previous limitations known in the literature as it permits the correction of any index. We illustrate its use in external clustering validation, to measure the accordance between clusters and an a priori known structure. The adjusted indices are intended to provide a realistic measure of clustering performance that excludes agreement by chance with ground truth. We use simulated data sets, under a range of scenarios - considering diverse numbers of clusters, clusters overlaps and balances - to discuss the pertinence and the precision of our proposal. Precision is established based on comparisons with the analytical approach for correction specific indices that can be corrected in this way are used for this purpose. The pertinence of the proposed correction is discussed when making a detailed comparison between the performance of two classical clustering approaches, namely Expectation-Maximization (EM) and K-Means (KM) algorithms. Eight indices of paired agreement are studied and new corrected indices are obtained.
Resumo:
Demand response concept has been gaining increasing importance while the success of several recent implementations makes this resource benefits unquestionable. This happens in a power systems operation environment that also considers an intensive use of distributed generation. However, more adequate approaches and models are needed in order to address the small size consumers and producers aggregation, while taking into account these resources goals. The present paper focuses on the demand response programs and distributed generation resources management by a Virtual Power Player that optimally aims to minimize its operation costs taking the consumption shifting constraints into account. The impact of the consumption shifting in the distributed generation resources schedule is also considered. The methodology is applied to three scenarios based on 218 consumers and 4 types of distributed generation, in a time frame of 96 periods.
Resumo:
In recent years, vehicular cloud computing (VCC) has emerged as a new technology which is being used in wide range of applications in the area of multimedia-based healthcare applications. In VCC, vehicles act as the intelligent machines which can be used to collect and transfer the healthcare data to the local, or global sites for storage, and computation purposes, as vehicles are having comparatively limited storage and computation power for handling the multimedia files. However, due to the dynamic changes in topology, and lack of centralized monitoring points, this information can be altered, or misused. These security breaches can result in disastrous consequences such as-loss of life or financial frauds. Therefore, to address these issues, a learning automata-assisted distributive intrusion detection system is designed based on clustering. Although there exist a number of applications where the proposed scheme can be applied but, we have taken multimedia-based healthcare application for illustration of the proposed scheme. In the proposed scheme, learning automata (LA) are assumed to be stationed on the vehicles which take clustering decisions intelligently and select one of the members of the group as a cluster-head. The cluster-heads then assist in efficient storage and dissemination of information through a cloud-based infrastructure. To secure the proposed scheme from malicious activities, standard cryptographic technique is used in which the auotmaton learns from the environment and takes adaptive decisions for identification of any malicious activity in the network. A reward and penalty is given by the stochastic environment where an automaton performs its actions so that it updates its action probability vector after getting the reinforcement signal from the environment. The proposed scheme was evaluated using extensive simulations on ns-2 with SUMO. The results obtained indicate that the proposed scheme yields an improvement of 10 % in detection rate of malicious nodes when compared with the existing schemes.
Resumo:
O objetivo desta dissertação foi estudar um conjunto de empresas cotadas na bolsa de valores de Lisboa, para identificar aquelas que têm um comportamento semelhante ao longo do tempo. Para isso utilizamos algoritmos de Clustering tais como K-Means, PAM, Modelos hierárquicos, Funny e C-Means tanto com a distância euclidiana como com a distância de Manhattan. Para selecionar o melhor número de clusters identificado por cada um dos algoritmos testados, recorremos a alguns índices de avaliação/validação de clusters como o Davies Bouldin e Calinski-Harabasz entre outros.
Resumo:
This study focuses on the implementation of several pair trading strategies across three emerging markets, with the objective of comparing the results obtained from the different strategies and assessing if pair trading benefits from a more volatile environment. The results show that, indeed, there are higher potential profits arising from emerging markets. However, the higher excess return will be partially offset by higher transaction costs, which will be a determinant factor to the profitability of pair trading strategies. Also, a new clustering approach based on the Principal Component Analysis was tested as an alternative to the more standard clustering by Industry Groups. The new clustering approach delivers promising results, consistently reducing volatility to a greater extent than the Industry Group approach, with no significant harm to the excess returns.
Resumo:
The long term goal of this research is to develop a program able to produce an automatic segmentation and categorization of textual sequences into discourse types. In this preliminary contribution, we present the construction of an algorithm which takes a segmented text as input and attempts to produce a categorization of sequences, such as narrative, argumentative, descriptive and so on. Also, this work aims at investigating a possible convergence between the typological approach developed in particular in the field of text and discourse analysis in French by Adam (2008) and Bronckart (1997) and unsupervised statistical learning.
Resumo:
The first example of a [5+2] cycloaddition reaction wherein the olefin of the vinylcyclopropyl moiety is constrained in a carbocycle was explored, and possible reasons on the lack of reactivity of the substrate were studied. A simple model substrate was synthesized and subjected to cycloaddition conditions to determine if the reason for the lack of reactivity was related to the complexity of the substrate, or if the lack of “conjugative character” of the cyclopropyl ring with respect to the olefin is responsible. A more complex bicyclic substrate possessing an angular methyl group at the ring junction was also synthesized and explored, with evidence supporting the current theory of deconjugation of the cyclopropyl moiety.
Resumo:
The goal of most clustering algorithms is to find the optimal number of clusters (i.e. fewest number of clusters). However, analysis of molecular conformations of biological macromolecules obtained from computer simulations may benefit from a larger array of clusters. The Self-Organizing Map (SOM) clustering method has the advantage of generating large numbers of clusters, but often gives ambiguous results. In this work, SOMs have been shown to be reproducible when the same conformational dataset is independently clustered multiple times (~100), with the help of the Cramérs V-index (C_v). The ability of C_v to determine which SOMs are reproduced is generalizable across different SOM source codes. The conformational ensembles produced from MD (molecular dynamics) and REMD (replica exchange molecular dynamics) simulations of the penta peptide Met-enkephalin (MET) and the 34 amino acid protein human Parathyroid Hormone (hPTH) were used to evaluate SOM reproducibility. The training length for the SOM has a huge impact on the reproducibility. Analysis of MET conformational data definitively determined that toroidal SOMs cluster data better than bordered maps due to the fact that toroidal maps do not have an edge effect. For the source code from MATLAB, it was determined that the learning rate function should be LINEAR with an initial learning rate factor of 0.05 and the SOM should be trained by a sequential algorithm. The trained SOMs can be used as a supervised classification for another dataset. The toroidal 10×10 hexagonal SOMs produced from the MATLAB program for hPTH conformational data produced three sets of reproducible clusters (27%, 15%, and 13% of 100 independent runs) which find similar partitionings to those of smaller 6×6 SOMs. The χ^2 values produced as part of the C_v calculation were used to locate clusters with identical conformational memberships on independently trained SOMs, even those with different dimensions. The χ^2 values could relate the different SOM partitionings to each other.
Resumo:
We study the problem of provision and cost-sharing of a public good in large economies where exclusion, complete or partial, is possible. We search for incentive-constrained efficient allocation rules that display fairness properties. Population monotonicity says that an increase in population should not be detrimental to anyone. Demand monotonicity states that an increase in the demand for the public good (in the sense of a first-order stochastic dominance shift in the distribution of preferences) should not be detrimental to any agent whose preferences remain unchanged. Under suitable domain restrictions, there exists a unique incentive-constrained efficient and demand-monotonic allocation rule: the so-called serial rule. In the binary public good case, the serial rule is also the only incentive-constrained efficient and population-monotonic rule.
Resumo:
A single object must be allocated to at most one of n agents. Money transfers are possible and preferences are quasilinear. We offer an explicit description of the individually rational mechanisms which are Pareto-optimal in the class of feasible, strategy-proof, anonymous and envy-free mechanisms. These mechanisms form a one-parameter infinite family; the Vickrey mechanism is the only Groves mechanism in that family.