860 resultados para conceptual data modelling
Resumo:
For the very large nonlinear dynamical systems that arise in a wide range of physical, biological and environmental problems, the data needed to initialize a numerical forecasting model are seldom available. To generate accurate estimates of the expected states of the system, both current and future, the technique of ‘data assimilation’ is used to combine the numerical model predictions with observations of the system measured over time. Assimilation of data is an inverse problem that for very large-scale systems is generally ill-posed. In four-dimensional variational assimilation schemes, the dynamical model equations provide constraints that act to spread information into data sparse regions, enabling the state of the system to be reconstructed accurately. The mechanism for this is not well understood. Singular value decomposition techniques are applied here to the observability matrix of the system in order to analyse the critical features in this process. Simplified models are used to demonstrate how information is propagated from observed regions into unobserved areas. The impact of the size of the observational noise and the temporal position of the observations is examined. The best signal-to-noise ratio needed to extract the most information from the observations is estimated using Tikhonov regularization theory. Copyright © 2005 John Wiley & Sons, Ltd.
Observations of the depth of ice particle evaporation beneath frontal cloud to improve NWP modelling
Resumo:
The evaporation (sublimation) of ice particles beneath frontal ice cloud can provide a significant source of diabatic cooling which can lead to enhanced slantwise descent below the frontal surface. The strength and vertical extent of the cooling play a role in determining the dynamic response of the atmosphere, and an adequate representation is required in numerical weather-prediction (NWP) models for accurate forecasts of frontal dynamics. In this paper, data from a vertically pointing 94 GHz radar are used to determine the characteristic depth-scale of ice particle sublimation beneath frontal ice cloud. A statistical comparison is made with equivalent data extracted from the NWP mesoscale model operational at the Met Office, defining the evaporation depth-scale as the distance for the ice water content to fall to 10% of its peak value in the cloud. The results show that the depth of the ice evaporation zone derived from observations is less than 1 km for 90% of the time. The model significantly overestimates the sublimation depth-scales by a factor of between two and three, and underestimates the local ice water content by a factor of between two and four. Consequently the results suggest the model significantly underestimates the strength of the evaporative cooling, with implications for the prediction of frontal dynamics. A number of reasons for the model discrepancy are suggested. A comparison with radiosonde relative humidity data suggests part of the overestimation in evaporation depth may be due to a high RH bias in the dry slot beneath the frontal cloud, but other possible reasons include poor vertical resolution and deficiencies in the evaporation rate or ice particle fall-speed parametrizations.
Resumo:
Two-dimensional flood inundation modelling is a widely used tool to aid flood risk management. In urban areas, where asset value and population density are greatest, the model spatial resolution required to represent flows through a typical street network (i.e. < 10m) often results in impractical computational cost at the whole city scale. Explicit diffusive storage cell models become very inefficient at such high resolutions, relative to shallow water models, because the stable time step in such schemes scales as a quadratic of resolution. This paper presents the calibration and evaluation of a recently developed new formulation of the LISFLOOD-FP model, where stability is controlled by the Courant–Freidrichs–Levy condition for the shallow water equations, such that, the stable time step instead scales linearly with resolution. The case study used is based on observations during the summer 2007 floods in Tewkesbury, UK. Aerial photography is available for model evaluation on three separate days from the 24th to the 31st of July. The model covered a 3.6 km by 2 km domain and was calibrated using gauge data from high flows during the previous month. The new formulation was benchmarked against the original version of the model at 20 m and 40 m resolutions, demonstrating equally accurate performance given the available validation data but at 67x faster computation time. The July event was then simulated at the 2 m resolution of the available airborne LiDAR DEM. This resulted in a significantly more accurate simulation of the drying dynamics compared to that simulated by the coarse resolution models, although estimates of peak inundation depth were similar.
Resumo:
The European research project TIDE (Tidal Inlets Dynamics and Environment) is developing and validating coupled models describing the morphological, biological and ecological evolution of tidal environments. The interactions between the physical and biological processes occurring in these regions requires that the system be studied as a whole rather than as separate parts. Extensive use of remote sensing including LiDAR is being made to provide validation data for the modelling. This paper describes the different uses of LiDAR within the project and their relevance to the TIDE science objectives. LiDAR data have been acquired from three different environments, the Venice Lagoon in Italy, Morecambe Bay in England, and the Eden estuary in Scotland. LiDAR accuracy at each site has been evaluated using ground reference data acquired with differential GPS. A semi-automatic technique has been developed to extract tidal channel networks from LiDAR data either used alone or fused with aerial photography. While the resulting networks may require some correction, the procedure does allow network extraction over large areas using objective criteria and reduces fieldwork requirements. The networks extracted may subsequently be used in geomorphological analyses, for example to describe the drainage patterns induced by networks and to examine the rate of change of networks. Estimation of the heights of the low and sparse vegetation on marshes is being investigated by analysis of the statistical distribution of the measured LiDAR heights. Species having different mean heights may be separated using the first-order moments of the height distribution.
Resumo:
Two ongoing projects at ESSC that involve the development of new techniques for extracting information from airborne LiDAR data and combining this information with environmental models will be discussed. The first project in conjunction with Bristol University is aiming to improve 2-D river flood flow models by using remote sensing to provide distributed data for model calibration and validation. Airborne LiDAR can provide such models with a dense and accurate floodplain topography together with vegetation heights for parameterisation of model friction. The vegetation height data can be used to specify a friction factor at each node of a model’s finite element mesh. A LiDAR range image segmenter has been developed which converts a LiDAR image into separate raster maps of surface topography and vegetation height for use in the model. Satellite and airborne SAR data have been used to measure flood extent remotely in order to validate the modelled flood extent. Methods have also been developed for improving the models by decomposing the model’s finite element mesh to reflect floodplain features such as hedges and trees having different frictional properties to their surroundings. Originally developed for rural floodplains, the segmenter is currently being extended to provide DEMs and friction parameter maps for urban floods, by fusing the LiDAR data with digital map data. The second project is concerned with the extraction of tidal channel networks from LiDAR. These networks are important features of the inter-tidal zone, and play a key role in tidal propagation and in the evolution of salt-marshes and tidal flats. The study of their morphology is currently an active area of research, and a number of theories related to networks have been developed which require validation using dense and extensive observations of network forms and cross-sections. The conventional method of measuring networks is cumbersome and subjective, involving manual digitisation of aerial photographs in conjunction with field measurement of channel depths and widths for selected parts of the network. A semi-automatic technique has been developed to extract networks from LiDAR data of the inter-tidal zone. A multi-level knowledge-based approach has been implemented, whereby low level algorithms first extract channel fragments based mainly on image properties then a high level processing stage improves the network using domain knowledge. The approach adopted at low level uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels. The higher level processing includes a channel repair mechanism.
Resumo:
Northern hemisphere snow water equivalent (SWE) distribution from remote sensing (SSM/I), the ERA40 reanalysis product and the HadCM3 general circulation model are compared. Large differences are seen in the February climatologies, particularly over Siberia. The SSM/I retrieval algorithm may be overestimating SWE in this region, while comparison with independent runoff estimates suggest that HadCM3 is underestimating SWE. Treatment of snow grain size and vegetation parameterizations are concerns with the remotely sensed data. For this reason, ERA40 is used as `truth' for the following experiments. Despite the climatology differences, HadCM3 is able to reproduce the distribution of ERA40 SWE anomalies when assimilating ERA40 anomaly fields of temperature, sea level pressure, atmospheric winds and ocean temperature and salinity. However when forecasts are released from these assimilated initial states, the SWE anomaly distribution diverges rapidly from that of ERA40. No predictability is seen from one season to another. Strong links between European SWE distribution and the North Atlantic Oscillation (NAO) are seen, but forecasts of this index by the assimilation scheme are poor. Longer term relationships between SWE and the NAO, and SWE and the El Ni\~no-Southern Oscillation (ENSO) are also investigated in a multi-century run of HadCM3. SWE is impacted by ENSO in the Himalayas and North America, while the NAO affects SWE in North America and Europe. While significant connections with the NAO index were only present in DJF (and to an extent SON), the link between ENSO and February SWE distribution was seen to exist from the previous JJA ENSO index onwards. This represents a long lead time for SWE prediction for hydrological applications such as flood and wildfire forecasting. Further work is required to develop reliable large scale observation-based SWE datasets with which to test these model-derived connections.
Resumo:
Recent coordinated observations of interplanetary scintillation (IPS) from the EISCAT, MERLIN, and STELab, and stereoscopic white-light imaging from the two heliospheric imagers (HIs) onboard the twin STEREO spacecraft are significant to continuously track the propagation and evolution of solar eruptions throughout interplanetary space. In order to obtain a better understanding of the observational signatures in these two remote-sensing techniques, the magnetohydrodynamics of the macro-scale interplanetary disturbance and the radio-wave scattering of the micro-scale electron-density fluctuation are coupled and investigated using a newly constructed multi-scale numerical model. This model is then applied to a case of an interplanetary shock propagation within the ecliptic plane. The shock could be nearly invisible to an HI, once entering the Thomson-scattering sphere of the HI. The asymmetry in the optical images between the western and eastern HIs suggests the shock propagation off the Sun–Earth line. Meanwhile, an IPS signal, strongly dependent on the local electron density, is insensitive to the density cavity far downstream of the shock front. When this cavity (or the shock nose) is cut through by an IPS ray-path, a single speed component at the flank (or the nose) of the shock can be recorded; when an IPS ray-path penetrates the sheath between the shock nose and this cavity, two speed components at the sheath and flank can be detected. Moreover, once a shock front touches an IPS ray-path, the derived position and speed at the irregularity source of this IPS signal, together with an assumption of a radial and constant propagation of the shock, can be used to estimate the later appearance of the shock front in the elongation of the HI field of view. The results of synthetic measurements from forward modelling are helpful in inferring the in-situ properties of coronal mass ejection from real observational data via an inverse approach.
Resumo:
Many different individuals, who have their own expertise and criteria for decision making, are involved in making decisions on construction projects. Decision-making processes are thus significantly affected by communication, in which a dynamic performance of human intentions leads to unpredictable outcomes. In order to theorise the decision making processes including communication, it is argued here that the decision making processes resemble evolutionary dynamics in terms of both selection and mutation, which can be expressed by the replicator-mutator equation. To support this argument, a mathematical model of decision making has been made from an analogy with evolutionary dynamics, in which there are three variables: initial support rate, business hierarchy, and power of persuasion. On the other hand, a survey of patterns in decision making in construction projects has also been performed through self-administered mail questionnaire to construction practitioners. Consequently, comparison between the numerical analysis of mathematical model and the statistical analysis of empirical data has shown a significant potential of the replicator-mutator equation as a tool to study dynamic properties of intentions in communication.
Resumo:
This study suggests a statistical strategy for explaining how food purchasing intentions are influenced by different levels of risk perception and trust in food safety information. The modelling process is based on Ajzen's Theory of Planned Behaviour and includes trust and risk perception as additional explanatory factors. Interaction and endogeneity across these determinants is explored through a system of simultaneous equations, while the SPARTA equation is estimated through an ordered probit model. Furthermore, parameters are allowed to vary as a function of socio-demographic variables. The application explores chicken purchasing intentions both in a standard situation and conditional to an hypothetical salmonella scare. Data were collected through a nationally representative UK wide survey of 533 UK respondents in face-to-face, in-home interviews. Empirical findings show that interactions exist among the determinants of planned behaviour and socio-demographic variables improve the model's performance. Attitudes emerge as the key determinant of intention to purchase chicken, while trust in food safety information provided by media reduces the likelihood to purchase. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This paper exploits a structural time series approach to model the time pattern of multiple and resurgent food scares and their direct and cross-product impacts on consumer response. A structural time series Almost Ideal Demand System (STS-AIDS) is embedded in a vector error correction framework to allow for dynamic effects (VEC-STS-AIDS). Italian aggregate household data on meat demand is used to assess the time-varying impact of a resurgent BSE crisis (1996 and 2000) and the 1999 Dioxin crisis. The VEC-STS-AIDS model monitors the short-run impacts and performs satisfactorily in terms of residuals diagnostics, overcoming the major problems encountered by the customary vector error correction approach.
Resumo:
A model was devised to describe simultaneously the grain masses of water and dry matter against thermal time during grain filling and maturation of winter wheat. The model accounted for a linear increase in water mass of duration anthesis-m(1) (end of rapid water assimilation phase) and rate a, followed by a more stable water mass until in,, after which water mass declined rapidly at rate e. Grain dry matter was described as a linear increase of rate bgf until a maximum size (maxgf) was attained at m(2).The model was fitted to plot data from weekly samples of grains taken from replicated field experiments investigating effects of grain position (apical or medial), fungicide (five contrasting treatments), sowing date (early or late), cultivar (Malacca or Shamrock) and season (2001/2002 and 2002/2003) on grain filling. The model accounted for between 83 and 99% of the variation ( 2) when fitted to data from individual plots, and between 97 and 99% when fitted to treatment means. Endosperm cell number of grains from early-sown plots in the first season were also counted. Differences in maxgf between grain positions and also between cultivars were mostly the result of effects on bgf and were empirically associated with water mass at nil. Fungicide application controlled S. tritici and powdery mildew infection, delayed flag leaf senescence, increased water mass at m(1) (wm(1)), and also increased m(2), bgf and maxgf. Fungicide effects on water mass were detected before fungicide effects on dry matter, but comparison of the effects of individual fungicide treatments showed no evidence that effects on wm(1), nor on endosperm cell numbers at about m(1), were required for fungicide effects on maxgf, (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The rate and scale of human-driven changes can exert profound impacts on ecosystems, the species that make them up and the services they provide that sustain humanity. Given the speed at which these changes are occurring, one of society's major challenges is to coexist within ecosystems and to manage ecosystem services in a sustainable way. The effect of possible scenarios of global change on ecosystem services can be explored using ecosystem models. Such models should adequately represent ecosystem processes above and below the soil surface (aboveground and belowground) and the interactions between them. We explore possibilities to include such interactions into ecosystem models at scales that range from global to local. At the regional to global scale we suggest to expand the plant functional type concept (aggregating plants into groups according to their physiological attributes) to include functional types of aboveground-belowground interactions. At the scale of discrete plant communities, process-based and organism-oriented models could be combined into "hybrid approaches" that include organism-oriented mechanistic representation of a limited number of trophic interactions in an otherwise process - oriented approach. Under global change the density and activity of organisms determining the processes may change non-linearly and therefore explicit knowledge of the organisms and their responses should ideally be included. At the individual plant scale a common organism-based conceptual model of aboveground-belowground interactions has emerged. This conceptual model facilitates the formulation of research questions to guide experiments aiming to identify patterns that are common within, but differ between, ecosystem types and biomes. Such experiments inform modelling approaches at larger scales. Future ecosystem models should better include this evolving knowledge of common patterns of aboveground-belowground interactions. Improved ecosystem models are necessary toots to reduce the uncertainty in the information that assists us in the sustainable management of our environment in a changing world. (C) 2004 Elsevier GmbH. All rights reserved.