889 resultados para computer vision, facial expression recognition, swig, red5, actionscript, ruby on rails, html5
Resumo:
The molecular mechanisms regulating the initial uptake of inorganic sulfate in plants are still largely unknown. The current model for the regulation of sulfate uptake and assimilation attributes positive and negative regulatory roles to O-acetyl-serine (O-acetyl-Ser) and glutathione, respectively. This model seems to suffer from exceptions and it has not yet been clearly validated whether intracellular O-acetyl-Ser and glutathione levels have impacts on regulation. The transcript level of the two high-affinity sulfate transporters SULTR1.1 and SULTR1.2 responsible for sulfate uptake from the soil solution was compared to the intracellular contents of O-acetyl-Ser, glutathione, and sulfate in roots of plants submitted to a wide diversity of experimental conditions. SULTR1.1 and SULTR1.2 were differentially expressed and neither of the genes was regulated in accordance with the current model. The SULTR1.1 transcript level was mainly altered in response to the sulfur-related treatments. Split-root experiments show that the expression of SULTR1.1 is locally regulated in response to sulfate starvation. In contrast, accumulation of SULTR1.2 transcripts appeared to be mainly related to metabolic demand and is controlled by photoperiod. On the basis of the new molecular insights provided in this study, we suggest that the expression of the two transporters depends on different regulatory networks. We hypothesize that interplay between SULTR1.1 and SULTR1.2 transporters could be an important mechanism to regulate sulfate content in the roots
Resumo:
Mitjançant imatges estereoscòpiques es poden detectar la posició respecte dela càmera dels objectes que apareixen en una escena. A partir de lesdiferències entre les imatges captades pels dos objectius es pot determinar laprofunditat dels objectes. Existeixen diversitat de tècniques de visió artificialque permeten calcular la localització dels objectes, habitualment amb l’objectiude reconstruir l’escena en 3D. Aquestes tècniques necessiten una gran càrregacomputacional, ja que utilitzen mètodes de comparació bidimensionals, i pertant, no es poden utilitzar per aplicacions en temps real.En aquest treball proposem un nou mètode d’anàlisi de les imatgesestereoscòpiques que ens permeti obtenir la profunditat dels objectes d’unaescena amb uns resultats acceptables. Aquest nou mètode es basa entransformar la informació bidimensional de la imatge en una informacióunidimensional per tal de poder fer la comparació de les imatges amb un baixcost computacional, i dels resultats de la comparació extreure’n la profunditatdels objectes dins l’escena. Això ha de permetre, per exemple, que aquestmètode es pugui implementar en un dispositiu autònom i li permeti realitzaroperacions de guiatge a través d’espais interiors i exteriors.
Resumo:
Projective homography sits at the heart of many problems in image registration. In addition to many methods for estimating the homography parameters (R.I. Hartley and A. Zisserman, 2000), analytical expressions to assess the accuracy of the transformation parameters have been proposed (A. Criminisi et al., 1999). We show that these expressions provide less accurate bounds than those based on the earlier results of Weng et al. (1989). The discrepancy becomes more critical in applications involving the integration of frame-to-frame homographies and their uncertainties, as in the reconstruction of terrain mosaics and the camera trajectory from flyover imagery. We demonstrate these issues through selected examples
Resumo:
We present a georeferenced photomosaic of the Lucky Strike hydrothermal vent field (Mid-Atlantic Ridge, 37°18’N). The photomosaic was generated from digital photographs acquired using the ARGO II seafloor imaging system during the 1996 LUSTRE cruise, which surveyed a ~1 km2 zone and provided a coverage of ~20% of the seafloor. The photomosaic has a pixel resolution of 15 mm and encloses the areas with known active hydrothermal venting. The final mosaic is generated after an optimization that includes the automatic detection of the same benthic features across different images (feature-matching), followed by a global alignment of images based on the vehicle navigation. We also provide software to construct mosaics from large sets of images for which georeferencing information exists (location, attitude, and altitude per image), to visualize them, and to extract data. Georeferencing information can be provided by the raw navigation data (collected during the survey) or result from the optimization obtained from imatge matching. Mosaics based solely on navigation can be readily generated by any user but the optimization and global alignment of the mosaic requires a case-by-case approach for which no universally software is available. The Lucky Strike photomosaics (optimized and navigated-only) are publicly available through the Marine Geoscience Data System (MGDS, http://www.marine-geo.org). The mosaic-generating and viewing software is available through the Computer Vision and Robotics Group Web page at the University of Girona (http://eia.udg.es/_rafa/mosaicviewer.html)
Resumo:
The relief of the seafloor is an important source of data for many scientists. In this paper we present an optical system to deal with underwater 3D reconstruction. This system is formed by three cameras that take images synchronously in a constant frame rate scheme. We use the images taken by these cameras to compute dense 3D reconstructions. We use Bundle Adjustment to estimate the motion ofthe trinocular rig. Given the path followed by the system, we get a dense map of the observed scene by registering the different dense local reconstructions in a unique and bigger one
Resumo:
In this paper, we present a method to deal with the constraints of the underwater medium for finding changes between sequences of underwater images. One of the main problems of underwater medium for automatically detecting changes is the low altitude of the camera when taking pictures. This emphasise the parallax effect between the images as they are not taken exactly at the same position. In order to solve this problem, we are geometrically registering the images together taking into account the relief of the scene
Resumo:
A few bacterial species are known to produce and excrete hydrogen cyanide (HCN), a potent inhibitor of cytochrome c oxidase and several other metalloenzymes. In the producer strains, HCN does not appear to have a role in primary metabolism and is generally considered a secondary metabolite. HCN synthase of proteobacteria (especially fluorescent pseudomonads) is a membrane-bound flavoenzyme that oxidizes glycine, producing HCN and CO2. The hcnABC structural genes of Pseudomonas fluorescens and P. aeruginosa have sequence similarities with genes encoding various amino acid dehydrogenases/oxidases, in particular with nopaline oxidase of Agrobacterium tumefaciens. Induction of the hcn genes of P. fluorescens by oxygen limitation requires the FNR-like transcriptional regulator ANR, an ANR recognition sequence in the -40 region of the hcn promoter, and nonlimiting amounts of iron. In addition, expression of the hcn genes depends on a regulatory cascade initiated by the GacS/GacA (global control) two-component system. This regulation, which is typical of secondary metabolism, manifests itself during the transition from exponential to stationary growth phase. Cyanide produced by P. fluorescens strain CHA0 has an ecological role in that this metabolite accounts for part of the biocontrol capacity of strain CHA0, which suppresses fungal diseases on plant roots. Cyanide can also be a ligand of hydrogenases in some anaerobic bacteria that have not been described as cyanogenic. However, in this case, as well as in other situations, the physiological function of cyanide is unknown.
Resumo:
NF1 is a family of polypeptides that binds to discrete DNA motifs and plays varying roles in the regulation of gene expression. These polypeptides are also thought to mediate the expression of differentiation-specific markers such as adipocyte and mammary cell type-specific genes. The expression of a number of cellular differentiation-specific markers is down-regulated during neoplastic transformation. We therefore investigated whether oncogenic transformation interferes with the action of NF1. Stable transfection of activated Ha-ras into a number of murine cells correlated with a down-regulation of the expression of the NF1 genes NF1/CTF and NF1/X. The down-regulation was not at the transcriptional level but at the level of stability of the NF1 mRNAs. The level of the DNA binding activity of the NF1 proteins was also reduced in Ha-v-ras-transformed cells, and the expression of a gene that depends on this family of transcription factors was specifically repressed. These results demonstrate that an activated Ha-ras-induced pathway destabilizes the half-life of mRNAs encoding specific members in the NF1 family of transcription factors, which leads to a decrease in NF1-dependent gene expression.
Resumo:
Methylphenidate and 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') are widely misused psychoactive drugs. Methylphenidate increases brain dopamine and norepinephrine levels by blocking the presynaptic reuptake transporters. MDMA releases serotonin, dopamine and norepinephrine through the same transporters. Pharmacodynamic interactions of methylphenidate and MDMA are likely. This study compared the pharmacodynamic and pharmacokinetic effects of methylphenidate and MDMA administered alone or in combination in healthy subjects using a double-blind, placebo-controlled, crossover design. Methylphenidate did not enhance the psychotropic effects of MDMA, although it produced psychostimulant effects on its own. The haemodynamic and adverse effects of co-administration of methylphenidate and MDMA were significantly higher compared with MDMA or methylphenidate alone. Methylphenidate did not change the pharmacokinetics of MDMA and vice versa. Methylphenidate and MDMA shared some subjective amphetamine-type effects; however, 125 mg of MDMA increased positive mood more than 60 mg of methylphenidate, and methylphenidate enhanced activity and concentration more than MDMA. Methylphenidate and MDMA differentially altered facial emotion recognition. Methylphenidate enhanced the recognition of sad and fearful faces, whereas MDMA reduced the recognition of negative emotions. Additionally, the present study found acute pharmacodynamic tolerance to MDMA but not methylphenidate. In conclusion, the combined use of methylphenidate and MDMA does not produce more psychoactive effects compared with either drug alone, but potentially enhances cardiovascular and adverse effects. The findings may be of clinical importance for assessing the risks of combined psychostimulant misuse. Trial registration identification number: NCT01465685 (http://clinicaltrials.gov/ct2/show/NCT01465685).
Resumo:
NK cells can kill MHC-different or MHC-deficient but not syngeneic MHC-expressing target cells. This MHC class I-specific tolerance is acquired during NK cell development. MHC recognition by murine NK cells largely depends on clonally distributed Ly49 family receptors, which inhibit NK cell function upon ligand engagement. We investigated whether these receptors play a role for the development of NK cells and provide evidence that the expression of a Ly49 receptor transgene on developing NK cells endowed these cells with a significant developmental advantage over NK cells lacking such a receptor, but only if the relevant MHC ligand was present in the environment. The data suggest that the transgenic Ly49 receptor accelerates and/or rescues the development of NK cells which would otherwise fail to acquire sufficient numbers of self-MHC-specific receptors. Interestingly, the positive effect on NK cell development is most prominent when the MHC ligand is simultaneously present on both hemopoietic and nonhemopoietic cells. These findings correlate with functional data showing that MHC class I ligand on all cells is required to generate functionally mature NK cells capable of reacting to cells lacking the respective MHC ligand. We conclude that the engagement of inhibitory MHC receptors during NK cell development provides signals that are important for further NK cell differentiation and/or maturation.
Resumo:
This paper reports a series of experiments on patient JB, a man with memory difficulties following damage to the left frontal lobe. The primary characteristic of JB's recognition memory impairment is a high level of false recognition together with a normal hit rate. The hypothesis that JB's false recognition reflects an over-reliance on familiarity is considered, but discounted on the basis that the false alarm rate is not affected by increasing the similarity between distracters and targets, and remains high when nonword stimuli are used. It is suggested, instead, that JB relies on a poorly focused memory description, which lacks item-specific detail but contains more general, low-level properties of the target items-these properties being held by many distracter items as well. This deficit is considered to arise because of damage to frontally mediated control processes involved in the selection of elements for memory encoding. An encoding deficit is supported by the fact that JB's false recognition is significantly reduced by orienting instructions, and is eliminated when his remote memory is subjected to recognition testing. In contrast, it is shown that manipulations at the level of retrieval (e.g. restricting the number of "old" responses) have little effect on his false recognition.
Resumo:
During my PhD, my aim was to provide new tools to increase our capacity to analyse gene expression patterns, and to study on a large-scale basis the evolution of gene expression in animals. Gene expression patterns (when and where a gene is expressed) are a key feature in understanding gene function, notably in development. It appears clear now that the evolution of developmental processes and of phenotypes is shaped both by evolution at the coding sequence level, and at the gene expression level.Studying gene expression evolution in animals, with complex expression patterns over tissues and developmental time, is still challenging. No tools are available to routinely compare expression patterns between different species, with precision, and on a large-scale basis. Studies on gene expression evolution are therefore performed only on small genes datasets, or using imprecise descriptions of expression patterns.The aim of my PhD was thus to develop and use novel bioinformatics resources, to study the evolution of gene expression. To this end, I developed the database Bgee (Base for Gene Expression Evolution). The approach of Bgee is to transform heterogeneous expression data (ESTs, microarrays, and in-situ hybridizations) into present/absent calls, and to annotate them to standard representations of anatomy and development of different species (anatomical ontologies). An extensive mapping between anatomies of species is then developed based on hypothesis of homology. These precise annotations to anatomies, and this extensive mapping between species, are the major assets of Bgee, and have required the involvement of many co-workers over the years. My main personal contribution is the development and the management of both the Bgee database and the web-application.Bgee is now on its ninth release, and includes an important gene expression dataset for 5 species (human, mouse, drosophila, zebrafish, Xenopus), with the most data from mouse, human and zebrafish. Using these three species, I have conducted an analysis of gene expression evolution after duplication in vertebrates.Gene duplication is thought to be a major source of novelty in evolution, and to participate to speciation. It has been suggested that the evolution of gene expression patterns might participate in the retention of duplicate genes. I performed a large-scale comparison of expression patterns of hundreds of duplicated genes to their singleton ortholog in an outgroup, including both small and large-scale duplicates, in three vertebrate species (human, mouse and zebrafish), and using highly accurate descriptions of expression patterns. My results showed unexpectedly high rates of de novo acquisition of expression domains after duplication (neofunctionalization), at least as high or higher than rates of partitioning of expression domains (subfunctionalization). I found differences in the evolution of expression of small- and large-scale duplicates, with small-scale duplicates more prone to neofunctionalization. Duplicates with neofunctionalization seemed to evolve under more relaxed selective pressure on the coding sequence. Finally, even with abundant and precise expression data, the majority fate I recovered was neither neo- nor subfunctionalization of expression domains, suggesting a major role for other mechanisms in duplicate gene retention.
Resumo:
Centrifuge is a user-friendly system to simultaneously access Arabidopsis gene annotations and intra- and inter-organism sequence comparison data. The tool allows rapid retrieval of user-selected data for each annotated Arabidopsis gene providing, in any combination, data on the following features: predicted protein properties such as mass, pI, cellular location and transmembrane domains; SWISS-PROT annotations; Interpro domains; Gene Ontology records; verified transcription; BLAST matches to the proteomes of A.thaliana, Oryza sativa (rice), Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens. The tool lends itself particularly well to the rapid analysis of contigs or of tens or hundreds of genes identified by high-throughput gene expression experiments. In these cases, a summary table of principal predicted protein features for all genes is given followed by more detailed reports for each individual gene. Centrifuge can also be used for single gene analysis or in a word search mode. AVAILABILITY: http://centrifuge.unil.ch/ CONTACT: edward.farmer@unil.ch.
Resumo:
MCT2 is the main neuronal monocarboxylate transporter essential for facilitating lactate and ketone body utilization as energy substrates. Our study reveals that treatment of cultured cortical neurons with insulin and IGF-1 led to a striking enhancement of MCT2 immunoreactivity in a time- and concentration-dependent manner. Surprisingly, neither insulin nor IGF-1 affected MCT2 mRNA expression, suggesting that regulation of MCT2 protein expression occurs at the translational rather than the transcriptional level. Investigation of the putative signalling pathways leading to translation activation revealed that insulin and IGF-1 induced p44- and p42 MAPK, Akt and mTOR phosphorylation. S6 ribosomal protein, a component of the translational machinery, was also strongly activated by insulin and IGF-1. Phosphorylation of p44- and p42 MAPK was blocked by the MEK inhibitor PD98058, while Akt phosphorylation was abolished by the PI3K inhibitor LY294002. Phosphorylation of mTOR and S6 was blocked by the mTOR inhibitor rapamycin. In parallel, it was observed that LY294002 and rapamycin almost completely blocked the effects of insulin and IGF-1 on MCT2 protein expression, whereas PD98059 and SB202190 (a p38K inhibitor) had no effect on insulin-induced MCT2 expression and only a slight effect on IGF-1-induced MCT2 expression. At the subcellular level, a significant increase in MCT2 protein expression within an intracellular pool was observed while no change at the cell surface was apparent. As insulin and IGF-1 are involved in synaptic plasticity, their effect on MCT2 protein expression via an activation of the PI3K-Akt-mTOR-S6K pathway might contribute to the preparation of neurons for enhanced use of nonglucose energy substrates following altered synaptic efficacy.
Resumo:
FGFR1 mutations have been identified in both Kallmann syndrome and normosmic HH (nIHH). To date, few mutations in the FGFR1 gene have been structurally or functionally characterized in vitro to identify molecular mechanisms that contribute to the disease pathogenesis. We attempted to define the in vitro functionality of two FGFR1 mutants (R254W and R254Q), resulting from two different amino acid substitutions of the same residue, and to correlate the in vitro findings to the patient phenotypes. Two unrelated GnRH deficient probands were found to harbor mutations in FGFR1 (R254W and R254Q). Mutant signaling activity and expression levels were evaluated in vitro and compared to a wild type (WT) receptor. Signaling activity was determined by a FGF2/FGFR1 dependent transcription reporter assay. Receptor total expression levels were assessed by Western blot and cell surface expression was measured by a radiolabeled antibody binding assay. The R254W maximal receptor signaling capacity was reduced by 45% (p<0.01) while R254Q activity was not different from WT. However, both mutants displayed diminished total protein expression levels (40 and 30% reduction relative to WT, respectively), while protein maturation was unaffected. Accordingly, cell surface expression levels of the mutant receptors were also significantly reduced (35% p<0.01 and 15% p<0.05, respectively). The p.R254W and p.R254Q are both loss-of-function mutations as demonstrated by their reduced overall and cell surface expression levels suggesting a deleterious effect on receptor folding and stability. It appears that a tryptophan substitution at R254 is more disruptive to receptor structure than the more conserved glutamine substitution. No clear correlation between the severity of in vitro loss-of-function and phenotypic presentation could be assigned.