952 resultados para coastal stewardship
Resumo:
In recent times, GIS is being increasingly used as a decision support system for management of fisheries and aquaculture. It provides new innovative approaches of the dynamic relations that characterize this sector. In this context, a study is conducted based on the secondary data of a major maritime state, Maharashtra, where mapping of fisheries profile of coastal districts in the state is performed through GIS tool having critical geographic dimensions. This paper aims to map information of the state which can be used for the purpose of planning and decision making as each aspect of map has a different component involved. For this purpose, at the core of the system, the data were accessed and integrated from different sources mainly from the five coastal districts of Maharashtra state. Data were brought in tabular form through Microsoft Excel and then joined to Map info Professional version 8.0 GIS software was used with the digitized map of Maharashtra state to enable mapping. This was further synchronized and integrated to generate four thematic maps searchable on several criteria. Map 1 contains the searchable criteria as regards to the fish growth for the year 1997-2004 and fish seed production for the year 2003-04. Map 2 contains fisher population along with their occupation for the year 1992. Map 3 contains brackish water and shrimp farming production and culture area. Map 4 contains infrastructural facilities which include type of boats etc. With this mapping, planners and various stakeholders have accessible information as regards to the various components of fisheries in the state of Maharashtra.
Resumo:
This study looked at nutrient pollution and how it is affecting coastal and marine ecosystems in Bangladesh, India, Maldives, Pakistan and Sri Lanka. Causes it addressed included: agricultural practices; aquaculture; domestic sewage; industrial actions; and the burning of fossil fuels.
Resumo:
The study presents the type and scale of any ecological change associated with coastal aquaculture development. These are enrichment, interaction with the food web, oxygen consumption, disturbance of wildlife and habitat destruction, interaction between escaped farmed stock and wild species, introduction and transfers, bioactive compounds (including pesticides and antibiotics), chemicals introduced via construction materials, and hormones and growth promoters.
Resumo:
The paper presents some recommendations for the development of the environmentally acceptable coastal aquaculture such as: 1) Formulate coastal aquaculture development and management plans, 2) Formulate integrated coastal zone management plans, 3) Apply the environmental impact assessment (EIA) process to all major aquaculture proposals, 4) Select suitable sites for coastal aquaculture, 5) Improve the management of aquaculture operations, 6) Assess the capacity of the ecosystem to sustain aquaculture development with minimal ecological change, 7) Establish guidelines governing the use of mangrove wetland for coastal aquaculture, 8) Establish guidelines for the use of bioactive compounds in aquaculture, 9) Assess and evaluate the true consequences of transfers and introductions of exotic organisms, 10) Regulate discharges from land-based aquaculture through the enforcement of effluent standards, 11) Establish control measures for aquaculture products, 12) Increase public awareness of the safety aspects of consuming seafood, 13) Apply incentives and deterrents to reduce environmental degradation from aquaculture activities, and 14) Monitor for ecological change.
Resumo:
Participants consisted of 25 middle and junior level personnel from BOBLME countries. Modules included: Integrated Coastal Management (ICM) concept and principles; ICM development and implementation; indicators of good practice; and action planning.
Resumo:
The objective of the project was to determine the stock structure of Indian Mackerel (Rastrelliger kanagurta) using microsatellite analysis
Resumo:
The objective of the project was to determine the reproductive biology of Indian Mackerel (Rastrelliger kanagurta) using Gonado-Somatic Index (GSI); length at first maturity; spawning season; morphological characteristics; and stomach contents.
Resumo:
The article discusses the guidelines for environmentally acceptable aquaculture to ensure that financial gain is not at the expense of the ecosystem or the rest of society. The general principles, strategies and objectives, and action plans for the implementation of environment-friendly aquaculture is also discussed.
Resumo:
Biological aspects, population dynamics and stock assessment of the Caspian Sea prawns Palaemon adspersus and Palaemon eleganse were investigated in Guilan coastal water of the Caspian Sea. Sampling was done monthly with a bottom trawl with mesh size of 3 mm in cod end in 0 - 5 m and 5 - 10 m depth in areas as Astra, Shafa Roud, Anzali, Chonchanan Chamkhaleh and Chaboksar during year 2002. Results of one year sampling showed that mean total length of Palaemon adspersus (pooled data) was 39.9±6.84 mm (X±SD) and mean wiegth was 1.133±0.67 g. The mean total length of females and males was 41.6±7.5 mm and 37.9±5.2 mm respectively and mean weight for the mentioned sexes was 1.353±0.65 g and 0.868±0.38 g respectively. There was significant differences in mean length and weight of females and males (P<0.05). The mean total annual sex ratio of males: females for this species was 1.4 and this sex ratio deviated significantly from 1:1 (X2, P<0.05) and biased towards males in the population of this species. The spawning season of Palaemon adspersus begins in April and ends in September with a peak in June . Mean fecundity of this species was 1994.5 ± 506.6 . The growth coefficients Loo and K for females were estimated as 58.5 mm and 2.3 /Year and for males as 55.9 mm and 2.6 /year respectively . The mean CPUA ( catch / Km2 ) for this species was 9.99 ± 33.2 kg / km2 and the correspondance biomass was calculated as 5067.7 kg in 0 - 10 m depth . The mean total length of Palaemon elegans (pooled data ) was 27.5 ± 5.7 mm (X±S.D) and mm and 24.01±4.18 mm respectively and mean weight for the mentioned sexes were was 0.553 ± 0.3 g and 0.237±0.15 g respectively. There was significant differences in mean length and weight of females and males (P<0.05). The mean total annual sex ratio of males:females for this species was 0.57 and in this species also sex ratio differed significantly from 1:1 (X2, P<0.05) and skewed towards females in the population of this species. The spawning season of Palaemon elegans extended from May to September with a peak in July . Mean fecundity of this species was 642.7±313.4. The growth coefficients LOO and K for females were estimated as 42.119 mm and 2.40 /Year and 33.87 mm and 2.50 /year for males respectively. The mean. CPUA ( catch/ Km2 ) for this species was 0.75±3.86 kg/km2 and the correspondance biomass was calculated as 382.1 kg in 0-10 m depth .