935 resultados para co2 capture
Resumo:
Population size estimation with discrete or nonparametric mixture models is considered, and reliable ways of construction of the nonparametric mixture model estimator are reviewed and set into perspective. Construction of the maximum likelihood estimator of the mixing distribution is done for any number of components up to the global nonparametric maximum likelihood bound using the EM algorithm. In addition, the estimators of Chao and Zelterman are considered with some generalisations of Zelterman’s estimator. All computations are done with CAMCR, a special software developed for population size estimation with mixture models. Several examples and data sets are discussed and the estimators illustrated. Problems using the mixture model-based estimators are highlighted.
Resumo:
Fast-growing poplar trees may in future be used as a source of renewable energy for heat, electricity and biofuels such as bioethanol. Water use in Populus x euramericana (clone I214), following long-term exposure to elevated CO2 in the POPFACE (poplar free-air carbon dioxide enrichment) experiment, is quantified here. Stomatal conductance was measured and, during two measurement campaigns made before and after coppicing, whole-tree water use was determined using heat-balance sap-flow gauges, first validated using eddy covariance measurements of latent heat flux. Water use was determined by the balance between leaf-level reductions in stomatal conductance and tree-level stimulations in transpiration. Reductions in stomatal conductance were found that varied between 16 and 39% relative to ambient air. Whole-tree sap flow was increased in plants growing under elevated CO2, on average, by 12 and 23%, respectively, in the first and in the second measurement campaigns. These results suggest that future CO2 concentrations may result in an increase in seasonal water use in fast-growing, short-rotation Populus plantations.
Resumo:
The article considers screening human populations with two screening tests. If any of the two tests is positive, then full evaluation of the disease status is undertaken; however, if both diagnostic tests are negative, then disease status remains unknown. This procedure leads to a data constellation in which, for each disease status, the 2 x 2 table associated with the two diagnostic tests used in screening has exactly one empty, unknown cell. To estimate the unobserved cell counts, previous approaches assume independence of the two diagnostic tests and use specific models, including the special mixture model of Walter or unconstrained capture-recapture estimates. Often, as is also demonstrated in this article by means of a simple test, the independence of the two screening tests is not supported by the data. Two new estimators are suggested that allow associations of the screening test, although the form of association must be assumed to be homogeneous over disease status. These estimators are modifications of the simple capture-recapture estimator and easy to construct. The estimators are investigated for several screening studies with fully evaluated disease status in which the superior behavior of the new estimators compared to the previous conventional ones can be shown. Finally, the performance of the new estimators is compared with maximum likelihood estimators, which are more difficult to obtain in these models. The results indicate the loss of efficiency as minor.
Resumo:
In this paper, we apply one-list capture-recapture models to estimate the number of scrapie-affected holdings in Great Britain. We applied this technique to the Compulsory Scrapie Flocks Scheme dataset where cases from all the surveillance sources monitoring the presence of scrapie in Great Britain, the abattoir survey, the fallen stock survey and the statutory reporting of clinical cases, are gathered. Consequently, the estimates of prevalence obtained from this scheme should be comprehensive and cover all the different presentations of the disease captured individually by the surveillance sources. Two estimators were applied under the one-list approach: the Zelterman estimator and Chao's lower bound estimator. Our results could only inform with confidence the scrapie-affected holding population with clinical disease; this moved around the figure of 350 holdings in Great Britain for the period under study, April 2005-April 2006. Our models allowed the stratification by surveillance source and the input of covariate information, holding size and country of origin. None of the covariates appear to inform the model significantly. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
1. Suspension feeding by caseless caddisfly larvae (Trichoptera) constitutes a major pathway for energy flow, and strongly influences productivity, in streams and rivers. 2. Consideration of the impact of these animals on lotic ecosystems has been strongly influenced by a single study investigating the efficiency of particle capture of nets built by one species of hydropsychid caddisfly. 3. Using water sampling techniques at appropriate spatial scales, and taking greater consideration of local hydrodynamics than previously, we examined the size-frequency distribution of particles captured by the nets of Hydropsyche siltalai. Our results confirm that capture nets are selective in terms of particle size, and in addition suggest that this selectivity is for particles likely to provide the most energy. 4. By incorporating estimates of flow diversion around the nets of caseless caddisfly larvae, we show that capture efficiency (CE) is considerably higher than previously estimated, and conclude that more consideration of local hydrodynamics is needed to evaluate the efficiency of particle capture. 5. We use our results to postulate a mechanistic explanation for a recent example of interspecific facilitation, whereby a reduction of near-bed velocities seen in single species monocultures leads to increased capture rates and local depletion of seston within the region of reduced velocity.
Resumo:
Onion (Allium cepa) was grown in the field within temperature gradient tunnels (providing about -2.5 degrees C to +2.5 degrees C from outside temperatures) maintained at either 374 or 532 mumol mol (-1) CO2. Plant leaf area was determined non-destructively at 7 day intervals until the time of bulbing in 12 combinations of temperature and CO2 concentration. Gas exchange was measured in each plot at the time of bulbing, and the carbohydrate content of the leaf (source) and bulb (sink) was determined. Maximum rate of leaf area expansion increased with mean temperature. Leaf area duration and maximum rate of leaf area expansion were not significantly affected by CO2. The light-saturated rates of leaf photosynthesis (A(sat)) were greater in plants grown at normal than at elevated CO2 concentrations at the same measurement CO2 concentration. Acclimation of photosynthesis decreased with an increase in growth temperature, and with an increase in leaf nitrogen content at elevated CO2. The ratio of intercellular to atmospheric CO2 (C-i/C-a ratio) was 7.4% less for plants grown at elevated compared with normal CO2. A(sat) in plants grown at elevated CO2 was less than in plants grown at normal CO2 when compared at the same C-i Hence, acclimation of photosynthesis was due both to stomatal acclimation and to limitations to biochemical CO2 fixation. Carbohydrate content of the onion bulbs was greater at elevated than at normal CO2. In contrast, carbohydrate content was less at elevated compared with normal CO2 in the leaf sections in which CO2 exchange was measured at the same developmental stage. Therefore, acclimation of photosynthesis in fully expanded onion leaves was detected despite the absence of localised carbohydrate accumulation in these field-grown crops.
Resumo:
The temperature dependent mixing of organic and fluorous phases is one of the key principals of fluorous biphasic systems (FBS). Given the high cost of the perfluorous solvents and their impacts to the environment, it is apparent that elimination of these solvents in bulk quantity in the FBS is advantageous. We report for the first time, the surface coverage of silica with a fluorous solvent like material that traps (at ambient temperatures) and releases (at elevated temperatures) a fluorous tin bromide in organic solvent. Here, we demonstrate the catalytic utilisation of this species for the hydrocyclisation of 6-bromo-1-hexene with NaBH4. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Homogeneous dispersion of microemulsion containing palladium nanoparticles in scCO(2) is, for the first time, observed via sapphire window reactor and these particles show an unusual reluctance for double bond hydrogenation of citral aldehyde at hydrophobic end rather than hydrophilic end (high regioselectivity) owing to the unique micelle environment in supercritical carbon dioxide that guide a head-on attack of the molecule.
Resumo:
Formation of a quasi-symmetrical mu(3)-carbonato-bridged self-assembled heteromolecular triangle of Ni(II), [(mu(3)-CO3){Ni-2(salmeNH)(2)(NCS)(2)}[Ni(salmeNH(2))(2)]center dot Et2O center dot H2O (HsalmeNH = 2-[(3-methylamino-propylimino)-methyl]-phenol) involves atmospheric CO2 uptake in a neutral medium, by spontaneous self-reorganization of the starting mononuclear Ni(II)-Schiff-base complex, [Ni(salmeNH)(2)]. The environment around Ni(II) in two of the subunits is different from the third one. The starting complex, (Ni(salmeNH)(2)], and one of the possible intermediate species, [Ni(salmeNH(2))(2)(NCS)(2)], which has a very similar coordination environment to that in the third Ni(II) center, have been characterized structurally. A plausible mechanism for the formation of such a triangle has also been proposed. The compound shows a very strong antiferromagnetic coupling. Fit as a regular triangular arrangement gave J = -53.1, g = 2.24, and R = 1.5 x 10(-4).
Resumo:
In the reaction of equimolar amounts of copper(II) acetate with 2,2'-dipyridylamine (DPA) in aqueous tetrahydrofuran, in presence of KOH, aerial CO2 is spontaneously fixed to the carbonate anion yielding [Cu(DPA)(CO3)] . 3H(2)O (1). X-ray crystallography shows the presence of zigzag ribbons of cyclic water pentamers in the channels of a chain-like metallo-organic framework. The water ribbons are stabilised by hydrogen bonds to the metallo-organic backbone. Each (H2O)(5) pentamer is approximately planar.
Resumo:
Stabilized nano-sized water droplet carrying water-soluble Co2+ species is employed as a new catalyst system for the oxidation of the alkyl aromatics in the presence of a fluorinated surfactant. This stable system contains no labile C-H structure and can facilitate excellent mixing of catalytic Co(II)/NaBr species, hydrocarbon substrates and oxygen in supercritical carbon dioxide fluid, which is demonstrated to be an excellent alternative solvent system to acetic acid or nitric acid for air oxidation of a number of alkyl aromatic hydrocarbons using Co(II) species at mild conditions. As a result, potential advantages of this 'greener' catalytic method including safer operation, easier separation and purification, higher catalytic activity with selectivity and without using corrosive or oxidation unstable solvent are therefore envisaged.
Resumo:
Bimetallic Pd-Ru nanoparticles of different elemental ratios are prepared via in situ reduction of their simple salts in reverse micelles in supercritical carbon dioxide (scCO(2)). The optimised Pd:Ru (1: 1) nanoparticle shows the highest activity for hydrogenation of functionalised alkene under mild conditions, which can be easily recycled under the reaction conditions without use of organic solvent. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We have developed a new method for the synthesis of Pd nanoparticles with controllable sizes within a silica matrix using solid-supported surfactants in supercritical CO2. XRD, HRTEM and CO chemisorption data show that unformly sized Pd nanoparticles are evenly distributed within the porous silica and are chemically tethered by surfactant molecules [poly(oxyethylene stearyl ether) and fluorinated poly(oxyethylene)]. It is postulated that tiny solid-supported surfactant assemblies act as nano-reactors for the template synthesis of nanoparticles or clusters from the soluble precursors therein.
Resumo:
One of the key hindrances on development of solid catalysts containing cobalt species for partial oxidation of organic molecules at mild conditions in conventional liquid phase is the severe metal leaching. The leached soluble Co species with a higher degree of freedom always out-performs those of solid supported Co species in oxidation catalysis. However, the homogeneous Co species concomitantly introduces separation problems. We have recently reponed for the first time, a new oxidation catalyst system for the oxidation of organic molecules in supercritical CO2 using the principle of micellar catalysis. [CF3(CF2)(8)COO](2)Co.xH(2)O (the fluorinated anionic moiety forms aqueous reverse micelles carrying water-soluble Co2+ cations in scCO(2)) was previously shown to be extremely active for the oxidation of toluene in the presence of sodium bromide in water-CO2 mixture, giving 98% conversion and 99% selectivity to benzoic acid at 120 degreesC. In this study, we show that the effects of varying the type of surfactant counterions and the length of the surfactant chains on catalysis. It is found that the use of [CF3(CF2)(8)COO](2)Mg.yH(2)O/Co(II) acetate is as effective as the [CF3(CF2)(8)COO](2)Co.xH(2)O and the fluorinated chain length used has a subtle effect on the catalytic rate measured. It is also demonstrated that this new type of micellar catalyst in scCO(2) can be easily separated via CO2 depressurisation and be reused without noticeable deactivation. (C) 2003 Elsevier B.V. All rights reserved.