995 resultados para clonal plant
Resumo:
Background: The impact of nano-scaled materials on photosynthetic organisms needs to be evaluated. Plants represent the largest interface between the environment and biosphere, so understanding how nanoparticles affect them is especially relevant for environmental assessments. Nanotoxicology studies in plants allude to quantum size effects and other properties specific of the nano-stage to explain increased toxicity respect to bulk compounds. However, gene expression profiles after exposure to nanoparticles and other sources of environmental stress have not been compared and the impact on plant defence has not been analysed. Results: Arabidopsis plants were exposed to TiO2-nanoparticles, Ag-nanoparticles, and multi-walled carbon nanotubes as well as different sources of biotic (microbial pathogens) or abiotic (saline, drought, or wounding) stresses. Changes in gene expression profiles and plant phenotypic responses were evaluated. Transcriptome analysis shows similarity of expression patterns for all plants exposed to nanoparticles and a low impact on gene expression compared to other stress inducers. Nanoparticle exposure repressed transcriptional responses to microbial pathogens, resulting in increased bacterial colonization during an experimental infection. Inhibition of root hair development and transcriptional patterns characteristic of phosphate starvation response were also observed. The exogenous addition of salicylic acid prevented some nano-specific transcriptional and phenotypic effects, including the reduction in root hair formation and the colonization of distal leaves by bacteria. Conclusions: This study integrates the effect of nanoparticles on gene expression with plant responses to major sources of environmental stress and paves the way to remediate the impact of these potentially damaging compounds through hormonal priming.
Resumo:
Plant community ecologists use the null model approach to infer assembly processes from observed patterns of species co-occurrence. In about a third of published studies, the null hypothesis of random assembly cannot be rejected. When this occurs, plant ecologists interpret that the observed random pattern is not environmentally constrained - but probably generated by stochastic processes. The null model approach (using the C-score and the discrepancy index) was used to test for random assembly under two simulation algorithms. Logistic regression, distance-based redundancy analysis, and constrained ordination were used to test for environmental determinism (species segregation along environmental gradients or turnover and species aggregation). This article introduces an environmentally determined community of alpine hydrophytes that presents itself as randomly assembled. The pathway through which the random pattern arises in this community is suggested to be as follows: Two simultaneous environmental processes, one leading to species aggregation and the other leading to species segregation, concurrently generate the observed pattern, which results to be neither aggregated nor segregated - but random. A simulation study supports this suggestion. Although apparently simple, the null model approach seems to assume that a single ecological factor prevails or that if several factors decisively influence the community, then they all exert their influence in the same direction, generating either aggregation or segregation. As these assumptions are unlikely to hold in most cases and assembly processes cannot be inferred from random patterns, we would like to propose plant ecologists to investigate specifically the ecological processes responsible for observed random patterns, instead of trying to infer processes from patterns
Resumo:
Background: Previous studies suggest that dietary protein might play a beneficial role in combating obesity and its related chronic diseases. Total, animal and plant protein intakes and their associations with anthropometry and serum biomarkers in European adolescents using one standardised methodology across European countries are not well documented. Objectives: To evaluate total, animal and plant protein intakes in European adolescents stratified by gender and age, and to investigate their associations with cardio-metabolic indicators (anthropometry and biomarkers). Methods: The current analysis included 1804 randomly selected adolescents participating in the HELENA study (conducted in 2006-2007) aged 12.5-17.5 y (47% males) who completed two non-consecutive computerised 24-h dietary recalls. Associations between animal and plant protein intakes, and anthropometry and serum biomarkers were examined with General linear Model multivariate analysis. Results: Average total protein intake exceeded the recommendations of World Health Organization and European Food Safety Authority. Mean total protein intake was 96 g/d (59% derived from animal protein). Total, animal and plant protein intakes (g/d) were significantly lower in females than in males and total and plant protein intakes were lower in younger participants (12.5-14.9 y). Protein intake was significantly lower in underweight subjects and higher in obese ones; the direction of the relationship was reversed after adjustments for body weight (g/(kg.d)). The inverse association of plant protein intakes was stronger with BMI z-score and body fat percentage (BF%) compared to animal protein intakes. Additionally, BMI and BF% were positively associated with energy percentage of animal protein. Conclusions: This sample of European adolescents appeared to have adequate total protein intake. Our findings suggest that plant protein intakes may play a role in preventing obesity among European adolescents. Further longitudinal studies are needed to investigate the potential beneficial effects observed in this study in the prevention of obesity and related chronic diseases.