652 resultados para chirped fiber grating
Resumo:
A novel method of fiber Bragg grating design based on tailored group delay is presented. The method leads to designs that are superior to the previously reported results. © OSA 2012.
Resumo:
Type IA fiber gratings have unusual physical properties compared with other grating types. We compare with performance characteristics of Type IA and Type I Bragg gratings exposed to the effects of Co60 gamma-irradiation. A Bragg peak shift of 190 pm was observed for Type IA gratings written in Fibercore PS-1250/1500 photosensitive fiber at a radiation dose of 116 kGy. This is the largest wavelength shift recorded to date under radiation exposure. The Type IA and Type I gratings show different kinetics under radiation and during post-radiation annealing; this can be exploited for the design of a grating based dosimetry system. © 2012 SPIE.
Resumo:
We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating reflectors and distributed feedback via Rayleigh scattering in an ∼22-km-long optical fiber. Twenty-two lasing lines with spacing of ∼100 GHz (close to International Telecommunication Union grid) in the C band are generated at the watt level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution, which is almost independent on power. © 2011 Optical Society of America.
Resumo:
We report the fabrication of a refractive index (RI) sensor based on a liquid core fibre Bragg grating (FBG). A micro-slot FBG was created in standard telecom optical fibre employing the tightly focused femtosecond laser inscription aided chemical etching. A micro-slot with dimensions of 5.74(h) × 125(w) × 1388.72(l) μm was engraved across the whole fibre and along 1mm long FBG which gives advantage of a relatively robust liquid core waveguide. The device performed the refractive index sensitivity up to about 742.72 nm/RIU. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating (FBG) reflectors and distributed feedback via Rayleigh scattering in a ∼22 km long optical fiber. Twenty two lasing lines with spacing of ∼100 GHz (close to ITU grid) in C-band are generated at Watts power level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution which is almost independent on power. The current set up showing the capability of generating Raman gain of about 100-nm wide giving the possibility of multiwavelength generation at different bands. © 2011 SPIE.
Resumo:
We present a new tuning method for chromatic dispersion compensators, which can be optically tunable. The dispersion compensators were made in Er/Yb co-doped fiber and were pumped with 980nm laser diodes. The tunable dispersion for a chirped grating and also a uniform-period grating was successfully demonstrated in the experiment.
Resumo:
Successful commercialization of a technology such as Fiber Bragg Gratings requires the ability to manufacture devices repeatably, quickly and at low cost. Although the first report of photorefractive gratings was in 1978 it was not until 1993, when phase mask fabrication was demonstrated, that this became feasible. More recently, draw tower fabrication on a production level and grating writing through the polymer jacket have been realized; both important developments since they preserve the intrinsic strength of the fiber. Potentially the most significant recent development has been femtosecond laser inscription of gratings. Although not yet a commercial technology, it provides the means of writing multiple gratings in the optical core providing directional sensing capability in a single fiber. Femtosecond processing can also be used to machine the fiber to produce micronscale slots and holes enhancing the interaction between the light in the core and the surrounding medium. © 2011 Bentham Science Publishers Ltd. All rights reserved.
Resumo:
We investigate numerically the effect of ultralong Raman laser fiber amplifier design parameters, such as span length, pumping distribution and grating reflectivity, on the RIN transfer from the pump to the transmitted signal. Comparison is provided to the performance of traditional second-order Raman amplified schemes, showing a relative performance penalty for ultralong laser systems that gets smaller as span length increases. We show that careful choice of system parameters can be used to partially offset such penalty. © 2010 Optical Society of America.
Resumo:
Among the different possible amplification solutions offered by Raman scattering in optical fibers, ultra-long Raman lasers are particularly promising as they can provide quasi-losless second order amplification with reduced complexity, displaying excellent potential in the design of low-noise long-distance communication systems. Still, some of their advantages can be partially offset by the transfer of relative intensity noise from the pump sources and cavity-generated Stokes to the transmitted signal. In this paper we study the effect of ultra-long cavity design (length, pumping, grating reflectivity) on the transfer of RIN to the signal, demonstrating how the impact of noise can be greatly reduced by carefully choosing appropriate cavity parameters depending on the intended application of the system. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Resumo:
In this paper, we propose an orthogonal chirp division multiplexing (OCDM) technique for coherent optical communication. OCDM is the principle of orthogonally multiplexing a group of linear chirped waveforms for high-speed data communication, achieving the maximum spectral efficiency (SE) for chirp spread spectrum, in a similar way as the orthogonal frequency division multiplexing (OFDM) does for frequency division multiplexing. In the coherent optical (CO)-OCDM, Fresnel transform formulates the synthesis of the orthogonal chirps; discrete Fresnel transform (DFnT) realizes the CO-OCDM in the digital domain. As both the Fresnel and Fourier transforms are trigonometric transforms, the CO-OCDM can be easily integrated into the existing CO-OFDM systems. Analyses and numerical results are provided to investigate the transmission of CO-OCDM signals over optical fibers. Moreover, experiments of 36-Gbit/s CO-OCDM signal are carried out to validate the feasibility and confirm the analyses. It is shown that the CO-OCDM can effectively compensate the dispersion and is more resilient to fading and noise impairment than OFDM.
Resumo:
Fiber optical sensors have played an important role in applications for monitoring the health of civil infrastructures, such as bridges, oil rigs, and railroads. Due to the reduction in cost of fiber-optic components and systems, fiber optical sensors have been studied extensively for their higher sensitivity, precision and immunity to electrical interference compared to their electrical counterparts. A fiber Bragg grating (FBG) strain sensor has been employed for this study to detect and distinguish normal and lateral loads on rail tracks. A theoretical analysis of the relationship between strain and displacement under vertical and horizontal strains on an aluminum beam has been performed, and the results are in excellent agreement with the measured strain data. Then a single FBG sensor system with erbium-doped fiber amplifier broadband source has been carried out. Force and temperature applied on the system have resulted in changes of 0.05 nm per 50 με and 0.094 nm per 10 oC at the center wavelength of the FBG. Furthermore, a low cost fiber-optic sensor system with a distributed feedback (DFB) laser as the light source has been implemented. We show that it has superior noise and sensitivity performances compared to strain gauge sensors. The design has been extended to accommodate multiple sensors with negligible cross talk. When two cascaded sensors on a rail track section are tested, strain readings of the sensor 20 inches away from the position of applied force decay to one seventh of the data of the sensor at the applied force location. The two FBG sensor systems can detect 1 ton of vertical load with a square wave pattern and 0.1 ton of lateral loads (3 tons and 0.5 ton, respectively, for strain gauges). Moreover, a single FBG sensor has been found capable of detecting and distinguishing lateral and normal strains applied at different frequencies. FBG sensors are promising alternatives to electrical sensors for their high sensitivity,ease of installation, and immunity to electromagnetic interferences.
Resumo:
This report reviews the selection, design, and installation of fiber reinforced polymer systems for strengthening of reinforced concrete or pre-stressed concrete bridges and other structures. The report is prepared based on the knowledge gained from worldwide experimental research, analytical work, and field applications of FRP systems used to strengthen concrete structures. Information on material properties, design and installation methods of FRP systems used as external reinforcement are presented. This information can be used to select an FRP system for increasing the strength and stiffness of reinforced concrete beams or the ductility of columns, and other applications. Based on the available research, the design considerations and concepts are covered in this report. In the next stage of the project, these will be further developed as design tools. It is important to note, however, that the design concepts proposed in literature have not in many cases been thoroughly developed and proven. Therefore, a considerable amount of research work will be required prior to development of the design concepts into practical design tools, which is a major goal of the current research project. The durability and long-term performance of FRP materials has been the subject of much research, which still are on going. Long-term field data are not currently available, and it is still difficult to accurately predict the life of FRP strengthening systems. The report briefly addresses environmental degradation and long-term durability issues as well. A general overview of using FRP bars as primary reinforcement of concrete structures is presented in Chapter 8. In Chapter 9, a summary of strengthening techniques identified as part of this initial stage of the research project and the issues which require careful consideration prior to practical implementation of these identified techniques are presented.
Resumo:
A worldwide interest is being generated in the use of fibre reinforced polymer composites (FRP) in rehabilitation of reinforced concrete structures. As a replacement for the traditional steel plates or external post-tensioning in strengthening applications, various types of FRP plates, with their high strength to weight ratio and good resistance to corrosion, represent a class of ideal material in external retrofitting. Within the last ten years, many design guidelines have been published to provide guidance for the selection, design and installation of FRP systems for external strengthening of concrete structures. Use of these guidelines requires understanding of a number of issues pertaining to different properties and structural failure modes specific to these materials. A research initiative funded by the CRC for Construction Innovation was undertaken (primarily at RMIT) to develop a decision support tool and a user friendly guide for use of fibre reinforced polymer composites in rehabilitation of concrete structures. The user guidelines presented in this report were developed after industry consultation and a comprehensive review of the state of the art technology. The scope of the guide was mainly developed based on outcomes of two workshops with Queensland Department of Main Roads (QDMR). The document covers material properties, recommended construction requirements, design philosophy, flexural, shear and torsional strengthening of beams and strengthening of columns. In developing this document, the guidelines published on FIB Bulletin 14 (2002), Task group 9.3, International Federation of Structural Concrete (FIB) and American Concrete Institute Committee 440 report (2002) were consulted in conjunction with provisions of the Austroads Bridge design code (1992) and Australian Concrete Structures code AS3600 (2002). In conclusion, the user guide presents design examples covering typical strengthening scenarios.